
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1991

A genetic algorithm approach to optimization of
asynchronous automatic assembly systems
Mark A. Wellman
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Technology Commons, Manufacturing Commons, and the Theory and
Algorithms Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Wellman, Mark A., "A genetic algorithm approach to optimization of asynchronous automatic assembly systems" (1991). Retrospective
Theses and Dissertations. 16822.
https://lib.dr.iastate.edu/rtd/16822

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F16822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F16822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F16822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F16822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F16822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F16822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1062?utm_source=lib.dr.iastate.edu%2Frtd%2F16822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/301?utm_source=lib.dr.iastate.edu%2Frtd%2F16822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=lib.dr.iastate.edu%2Frtd%2F16822&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=lib.dr.iastate.edu%2Frtd%2F16822&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/16822?utm_source=lib.dr.iastate.edu%2Frtd%2F16822&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

A genetic algorithm approach to

optimization of asynchronous automatic assembly systems

by

Mark A. Wellman

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillntent of the

Departments:

Major:

Requirements for the Degree of

MASTER OF SCIENCE

Industrial and Manufacturing Systems Engineering
Statistics
Operations Research

Signatures have been redacted for privacy

Iowa State University
Ames, Iowa

1991

www.manaraa.com

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENT
I. INTRODUCTION .

II.

A.
B.
C.

Assembly Systems ••••
Optimization Approaches
Research Objectives • • •

.

.
REVIEW OF LITERATURE.

A. AAS Modeling Methods · .
1. Analytical models · .

a. Literature review of open systems

vii

1

1
4
6

7

7

10

10

1) Models containing random processing times 10
2) Models containing unreliable stations • • •. 12
3) Models containing unreliable stations and

random process times • • • • • • •• 14

2.
3.

h. Literature review of closed systems ·
Simulation models • • •
Summary of literature

· ·
B. Stochastic Optimization Algorithms

1.
2.
3.

4.

Stochastic quasigradient methods
Simulated annealing •••••
Genetic algorithms ••• · .

.
a. General description of the algorithm •••
h. Applications of a genetic algorithm •••
c. Review of genetic algorithm literature

. . .

Summary of literature .
III. METHODOLOGY .

A.
B.

. . · . . . Simulation Model
Genetic Algorithm . . . ·

1.
2.

Mathematical foundations
Implementation ••••••

. . .
.

· ·

15

17
19

19

20
22
25

25
27
27

31

32

32
35

35
40

www.manaraa.com

iii

C. Application of a GA to an AAS Buffer Allocation Problem. •• 41

IV. RESULTS ••••••• . .
A. GA Performance on Deterministic Functions

1- Choice of population size . . . · · · · 2. Choice of crossover probability • · • · 3. Choice of mutation probability · . . · . . · 4. Fitness scaling · · · . . · . .
B. GA Performance on an AAS Simulation Model · · . .
C. Summary . · · . .

V. CONCLUSION .
REFERENCES .

43

43

45
51
56
61

64
72

73

75

www.manaraa.com

iv

LIST OF FIGURES

Figure 1. An open asynchronous automatic assembly system . . . 3

Figure 2. A closed asynchronous automatic assembly system 3

Figure 3. Example of simple crossover 26

Figure 4. The effects of population size on off-line performance for
function fl' • • 46

Figure 5. The effects of population size on on-line performance for
function fl' . 46

Figure 6. The effects of population size on off-line performance for
function f 2 •••••••••••••••••••••••• .• • •• 47

Figure 7. The effects of population size on on-line performance for
function f 2 •••••••••••••••••••••••••••• 47

Figure 8. The effects of population size on off-line performance for
function f 3 •••••••••••••••••••••••••••• 48

Figure 9. The effects of population size on on-line performance for
function f 3 •••••••••••••••••••••••••••• 48

Figure 10. The effects of population size on off-line performance for
function f4•.................... 49

Figure 11. The effects of population size on on-line performance for
function f 4 •••••••••••••••••••••••••• 49

Figure 12. Genetic algorithm report for generations 19 and 20 for
function fl' • . . . • • 50

Figure 13.

Figure 14.

Figure 15.

Figure 16.

The effects of crossover probability on off-line
performance for function fl. • • • • • • . • • . •

The effects of crossover probability on on-line
performance for function fl' • • • • • • • • • • •

The effects of crossover probability on off-line
performance for function f2 •••••••.•••.

·
·
·

The effects of crossover probability on on-line
performance for function f2 •••••••••••

52

52

53

53

www.manaraa.com

v

Figure 17. The effects of crossover probability on off-line
performance for function f3 •••••••••••••••••• 54

Figure 18. The effects of crossover probability on on-line
performance for function f3 •••••••••••••••••• 54

Figure 19. The effects of crossover probability on off-line
performance for function f4 •••••••••••••••••• 55

Figure 20. The effects of crossover probability on on-line
performance for function f4 •••••••••••

Figure 21. The effects of mutation probability on off-line
performance for function fl' • • • • • • • • • •

Figure 22. The effects of mutation probability on on-line
performance for function fl •••••••••••

Figure 23. The effects of mutation probability on off-line
performance for function f2 •••••••••••

Figure 24. The effects of mutation probability on on-line
performance for function f2 •••••••••••

Figure 25. The effects of mutation probability on off-line
performance for function f 3 •••••••••••

Figure 26. The effects of mutation probability on on-line
performance for function f3 •••••••••••

Figure 27. The effects of mutation probability on off-line
performance for function f4 •••••••••••

Figure 28. The effects of mutation probability on on-line

·
·

·
·
·
·

·
·

· · ·
· · ·
· · ·
• · ·

· • ·
· · ·
· · ·

· · ·

· · · 55

· · · 57

· · · 57

· · · 58

· · · 58

· · • 59

· · · 59

· · · 60

performance for function f4 ••••••••••••••••.• 60

Figure 29.

Figure 30.

The effects of scaling fitness values on off-line
performance for function fl (n = 50 and 100)

The effects of scaling fitness values on on-line
performance for function fl (n = 50 and 100)

·
·

Figure 31. The effects of population size on off-line performance for

63

63

AAS simulation model throughput for configuration 1 66

www.manaraa.com

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

vi

LIST OF TABLES

Verification of c++ simulation program code against
results reported by Liu and Sanders (1988). • •••

Deterministic objective functions used in GA parameter

. .
performance evaluation • • • • • • • • • • • • • • • • • • •

Confidence interval estimates for GA and SQG best buffer
configurations (buffer capacity allowed to vary from 1 to
32 units, GA population size n = 50) • • • • • • • • • • •

Confidence interval estimates for GA and SQG best buffer
configurations (buffer capacity allowed to vary from 1 to
32 units, GA population size n = 100) • • • • • • • • • •

Confideftce interval estimates for GA and SQG best buffer
configurations (buffer capacity allowed to vary from 1 to
16 units, GA population size = 100) ••••••••

Confidence interval estimates for GA and SQG best buffer
configurations for system configuration 2 •••••••••

Confidence interval estimates for GA and SQG best buffer
configurations for system configuration 3 ••••••••••

36

44

67

68

69

70

71

www.manaraa.com

vii

ACKNOWLEDGEMENT

I would like thank Dr. Doug Gemmill for his continued support and

helpful insight throughout this thesis project. His comments and

encouragements were greatly appreciated.

I would also like to thank my parents for their undying support

throughout the years. You were always there when I needed an

encouraging word or when I just needed someone to put things back into

proper perspective. You have given me much, for which I will be eternally

grateful.

I would especially like to thank my loving wife, Sue. You were there

whenever I needed your support. I thank you for enduring the many

months which were filled with work on this thesis.

www.manaraa.com

1

I. INTRODUCTION

Assembly processes are among the most important in a manufacturing

facility. The costs associated with assembly operations can often account

for more than 50% of the finished product [Boothroyd et al., 1982]. It has

been estimated [Captor et al., 1983] that batch manufacturing accounts for

appro~imately 75% of all manufacturing in the United States and that this

process accounts for nearly 22% of the U.S. Gross National Product.

Clearly, the assembly process plays an important role in manufacturing and

the entire national economy.

A. Assembly Systems

From a managerial standpoint, assembly systems can have a large

impact upon profitability and competitiveness. As industry is reducing

production times in order to reduce lead-times of product deliveries,

optimization of assembly processes is a primary concern. The most common

objectives are to minimize the additional cost per part (attributed to

assembly operations) or to maximize the efficiency of the system. With a

real system the costs of floor space, labor, additional stations, and

transport pallets can be estimated and a system configured on the basis of

economic payback. Since we are studying a representative hypothetical

system, the objective will be to maximize the efficiency, or throughput, of

the system. Throughput is defined by marking a station which

corresponds to the unload operation of the system and observing the rate

of output.

www.manaraa.com

2

At present we can surmise that an automatic assembly system (AAS)

is merely a queuing system. An AAS, like any basic queuing system,

consists of three basic elements: customers (parts), servers (workstations),

and randomness. The randomness can be seen by way of variable service

times, unreliable service stations, or variable arrival rates to the system.

An automatic assembly system can be manual or automatic, and can be

synchronous or asynchronous. A manual system is one in which the

service is completed by human operators. An automatic system, in contrast,

service is completed by robots or automatic workheads. Synchronous

systems are those in which the production rate is fixed by the transport

mechanism. All parts move from station to station at the same time, thus

all stations have the identical service time. Asynchronous systems allow

the parts to move to the next station upon completion of the service. This

allows the system some autonomy since when there is a work stoppage at

one station, the remaining stations can continue processing. When a work

stoppage occurs in a synchronous system, however, the entire system waits

until the stoppage is corrected.

We can also classify assembly systems according to their topology.

An open system (Figure 1) involves parts arriving at one end of the

system, progressing through a series of workstations, and departing the

system from the other end. A closed system (Figure 2) requires parts to

be unloaded and loaded at the same position with the stations configured

around a loop. The open system has the distinction of a variable number

of parts in the system at anyone time. The closed system, on the other

hand, has a fixed number of parts in the system at all times.

www.manaraa.com

3

8t;&tj,on 1 .t&tj,oo 2 8tat.1on .s 8t&tj,on "-1 8tat.1on _

CX) CX) CX) CX) ~

L_=
ODD O~ .. 0

-,.~~j aalCl. --- ~c a -- "'- _:l.:l.ece -
l>O>ml.aad

Figure 1. An open asynchronous automatic assembly system

Statj.on 1 I!Jtatj.on 2 8tatj.on j.

.... 11.t;.

.. 0 0

tJp10&<I 0
0 ~ • 0 •

• II Downl.0a4 ... 0 ~
0 ...
" III

0 ~~." N-l. ~ " II

000 0 0 ... 0 o~

8t:&tj,OD N I!Jtatj,on .-J.

Figure 2. A closed asynchronous automatic assembly system

www.manaraa.com

4

One of the primary decision variables in an asynchronous AAS is the

optimal allocation of buffer space between stations. Allocating buffer space

has the advantage of allowing stations to work more autonomously. The

disadvantage is that buffer space introduces transport delays between

stations. The application of large buffer spaces also will have large costs

associated with the design. This can be attibuted to the incremental costs

of adding additional conveyor, the cost of floorspace, and the cost of

carrying extra work-in-process inventory. The cost of floorspace is not

trivial, with a couple estimates being $1600 per square foot for General

Motors [Liu, 1987] to $5000 per square foot for clean room facilities in

computer chip manufacturing (data obtained for clean room estimates from

discussions with an industrial engineer from a chip manufacturing facility).

Another major decision variable in the closed asynchronous AAS case,

is the optimal number of fixture pallets to allocate to the system. From a

system efficiency standpoint, allocating too many pallets introduces

"blocking" of an upstream station when a station experiences a breakdown.

Too few pallets will account for the "starvation" of downstream stations due

to longer transportation delays. Also, from an economic standpoint, each

fixture pallet can cost from $1000 to $5000 [Liu and Sanders, 1988].

B. Optimization Approaches

There have been several methodologies investigated to try and gain

some insight on the problem of optimizing the allocation of pallets and

buffer space. Their differences involve the manner in which the system is

modeled, the number and variety of simplifying assumptions used in

www.manaraa.com

5

modeling the system, and the algorithm used to optimize the AAS design.

The primary algorithms investigated will include: stochastic quasigradient

(SQG) methods, simulated annealing, and genetic algorithms.

The objective function (throughput, or total profit) is a stochastic

function of the input variables. The optimization process of a stochastic

function therefore leads to a Monte Carlo method of global optimization.

The merits of each aforementioned algorithm as applied to the buffer

allocation problem will be investigated. The genetic algorithm will be the

primary method investigated. No literature has been found on a genetic

algorithm's effectiveness on this problem.

John Holland [Holland, 1975] founded the field of genetic algorithms

(GAs). His book, Adaptation in Natural and Artificial Systems, discussed the

ideas of representing complicated structures by a simple representation of

bit strings, and the power of simple transformations to improve these bit

strings. These transformations, based on the mechanics of natural selection

and "survival of the fittest", are reproduction, crossover, and mutation.

The idea being that a model of the natural evolution process might be

applicable to standard optimization problems.

Nature has been very good in optimizing the ecosystems since those

individuals with "good" traits tend to populate where those with "bad"

traits tend to die out. The genetic algorithm process, as applied to AAS

design, might be interpreted as the operation on those designs with

favorable objective results, leading to the generation of other favorable

designs. Also, the operation on those designs with unfavorable objective

www.manaraa.com

6

results will lead to those designs dying out.

c. Research Objectives

The primary effort of this research will be to investigate the

applicability of a genetic algorithm to a closed asynchronous automatic

assembly system. A hypothetical closed AAS model containing 10 stations

configured in a single loop with unreliable stations is used as a testbed.

Objective function estimates are furnished through a computer simulation

model. From the analysis, we will describe how a genetic algorithm

performed on the testbed and its applicability to similar systems.

www.manaraa.com

7

II. REVIEW OF LITERATURE

This literature review assembles a collection of two areas of the

automatic assembly process analysis. The first being the different

approaches of modeling an AAS, including the different underlying

assumptions of each modeling method. The second area includes a review

of· several stochastic optimization algorithms. This second area will

summarize the algorithm method and investigate the advantages and

disadvantages of each algorithm as applied to the AAS optimization problem.

A. AAS Modeling Methods

Queuing networks can be used to solve several practical problems.

Two major classifications can be seen with respect to AASs. Open networks

[Jackson, 1963] allow jobs to enter and leave the network. Closed networks

[Gordon and Newell, 1967} have a constant set of jobs staying in the

network. In a closed network, the practical interpretation is departing

jobs are replaced with a statistically identical job so one can analyze the

system as if no jobs enter or depart.

The AAS differs from the basic queuing system in that it includes a

transport mechanism that moves parts from station to station. The

transportation mechanism, reliability of the stations, topology of the system

(open, closed, or multiple loop), and other complicating factors make the

analytic modeling of a real assembly system difficult. Two major analytic

methods include Markov chain analysis and queuing network models. The

difficulties of each approach, as applied to an AAS, are summarized below.

www.manaraa.com

8

Markov chain models require a large number of states to model a

system of more than two or three stations. Each station in an AAS can be

in one of two states: (1) a "down" state represents a station that cannot

process parts due to a jam or machine breakdown, or the station is "forced

down" when its buffer is empty (station is said to be "starved") or when

the buffer space of the next downstream station is full (station is said to

be "blocked"), (2) an "up" state represents a station that is processing

parts normally. Also, each buffer having a storage capacity of N

assemblies has N+l states (corresponding to 0 to N assemblies in the

buffer). For example, a 10 stage system with 10 buffers each having a

capacity of 5 assemblies will have 210 x 610 (::::62 billion) states.

The queuing network models have a difficulty in incorporating the

transportation delays or the blocking and starvation aspects of an AAS.

Recently, however, some effort in trying to model the transportation delay

and its effect on performance evaluation of transfer lines can be seen

[Commault and Semery, 1990]. With regards to the blocking/starvation

issue, most queuing models involve the assumption of infinite buffer space;

therefore, the blocking effect is dismissed. In actuality, buffers are

usually small and the blocking effect is not negligible.

To better understand the AAS model, it is necessary to define the

appropriate variables which will be under investigation. These variables

will also divide the literature into logical areas where the analysis will

concentrate on the impact of several input variables on AAS performance.

Also, the models will vary according to the simplifying assumptions of the

model. The following represents the typical assumptions and model

www.manaraa.com

parameters:

Station service time
Deterministic
Stochastic

Transfer mechanism
Synchronous
Asynchronous

Inter-Stage buffers
None
Finite
Infinite

Transport delay time
None
Non-zero

Topology of the system
Serial (open)
Single loop (closed)
Multiple loop (closed)

9

Inter-arrival time at first station
(this is for open systems, since the arrival rate for a closed system
is equal to the output of the last station)

Zero
Deterministic
Stochastic

Station jams or breakdowns
None
Stochastic

Stations clear or repair times
Deterministic
Stochastic

Scrapping of the assemblies after a jam/breakdown
None
Random fraction
All

The remainder of this section will review the literature corresponding

to AAS modeling approaches. The AAS modeling literature is divided by

www.manaraa.com

10

those authors who investigate open systems versus those who investigate

closed systems. The section will conclude with some discussion of

literature corresponding to simulation models of assembly line systems. For

additional material on analytical models, an excellent review of seven

analytical models is presented by Buzacott and Hanifin [Buzacott and

Hanifin, 1978].

1. Analytical models

Analytical models, or stC?chastic process models, is one approach to

modeling assembly systems. The following review summarizes the literature

available for modeling open systems and then follows with a review of

closed systems models.

a. Literature review of open' systems Open systems are those

that have parts entering at one end of the system and departing at the

other end. This type of system has received the most attention as it is

relatively easier to model than the closed system configuration. This

discussion of open systems is further divided into three areas, including:

System models with reliable stations with random processing

times

System models with unreliable stations with deterministic

processing times

System models with both unreliable stations and random

processing times

1) Models containing random processing times These models

concentrate on determining what effect random processing times have on

the system performance. Most models assume the processing times are

www.manaraa.com

11

random variables with an exponential, Erlang, or normal distribution. The

common objective is to determine what influence internal buffer storage,

number of slations, and station sequence has on system performance. The

investigations are typically restricted to the two- or three-station case.

Hillier and Boling [Hillier and Boling, 1966] discussed what effect the

number of work stations, amount of buffer storage, and unbalancing of the

station cycle times has on the pr?duction rate. They considered systems

containi!lg two-, three-, and four-station production systems. Their

approach was not to develop a model yielding exact numerical results that

were from a real system. Rather, they were interested in tractability

where the objective was to gain insight in relative magnitudes of design

changes on production performance. They used basic queuing theory

equations to determine the effects of each factor. Their primary

contributions were to support evidence that, in some cases, unbalancing a

production line can in fact increase its efficiency. They found that

production was maximized by assigning a somewhat lower mean operation

time to the intermediate stations. They characterized this as the "bowl

phenomenon. "

Hatcher [Hatcher, 1969] investigated the impact of adding internal

buffer storage capacity for two- and three-stage production lines. He also

looked at the decrease in production rate caused by adding stages to the

line. The service times for each station was assumed to be a statistically

independent exponential random variable. Hatcher concluded that near

optimum production rates could be attained with relatively small buffer

allocations. He determined that after considering a wide variety of service

www.manaraa.com

12

rates, that ten or less items per buffer would be sufficient. Hatcher also

concluded that adding additional stations would reduce the output rate of

the production line; however, the incremental effect would diminish as the

number of stages increased.

Rao [Rao, 1975] described analytical solutions for determining the

production rate of a two-stage serial production system with variable

operation time at the stages. He reported that the methodology could be

applicable to any type of service time distribution, where he worked out

specific examples using the Erlang and normal distributions. The analysis

lead to the conclusion that at high values of coefficient of variation, type

of service time distribution had a considerable effect upon the system

throughput.

2) Models containing unreliable stations This research

effort concentrates on the effects of station failures and subsequent

repairs on the efficiency of the system. The station processing times are

considered to be deterministic and constant. The system randomness arises

through random times between station jams/breakdowns and the random

time required to clear/repair the station. Most studies assume that each

station failure is independent of other station failures. The breakdowns

and repairs are generally modeled assuming geometrically distributed

random times. This can be attributed that most models discretize time.

Thus, time moves in discrete increments where th~ system moves from one

"state" to another "state." The geometric distribution is the discrete

analog of the exponential; thus, an exponential distribution is often used in

simulation models.

www.manaraa.com

13

Sheskin [Sheskin, 1975] analyzed the allocation of storage capacity to

buffers between consecutive machines in a serial, synchronized, automatic

transfer production line. Exact numerical results were presented for lines

up to 4 machines with a total buffer capacity of twelve units. A

decomposition methodology was outlined which would give approximate

results for lines containing more than four stations.

Yeralan and Muth [Yeralan and Muth, 1987] presented a general

model for production lines containing two unreliable stations, a finite

capacity inter-station buffer, constant cycle time, and synchronous

transfer. They used Markov chain analysis and presented a general

recursive procedure to solve for the steady-state probabilities. They also

investigated cases when the steady-state probability vector leads to the

ability to express the production rate as a closed-form function of the

buffer capacity.

Jafari and Shanthikumar [Jafari and Shanthikumar, 1989] present a

heuristic solution of the optimal distribution of intermediate storage

buffers, given a total storage capacity, in a synchronized transfer line with

an arbitrary number of stages. They formulate the system as a dynamic

programming problem to compute the production rate of the transfer line.

They showed that the dynamic programming results gave reasonable

estimates of the production rate when compared to an exact production rate

for the three-station case.

Recently, Commault and Semery [Commault and Semery, 1990]

presented an approach to incorporate the transportation delay in buffers

into an analytical performance evaluation of transfer lines. They showed

www.manaraa.com

14

that the delays in buffers could be approximately represented as an

"equivalent line" with the same machine characteristics but reduced buffer

capacities. The reduction of a two-station intermediate buffer capacity by

a number of Ac spaces, where A C is defined as the transit time in the

buffer divided by the maximum of the adjacent machines' processing time.

This method was reported to give a pessimistic production rate evaluation.

The error was determined to be less than one percent for the two-station

case, and simulation results supported the application to systems containing

more than two-stations.

3) Models containing unreliable stations and random process

These models allow the random variables to include the

processing times at the stations, the jam/breakdown rates, and the time to

clear/repair the station. These models add significant complexity to the

analyticsj therefore, there is a limited number of studies.

Buzacott [Buzacott, 1972] presents an exact Markov model of a two

station system with unreliable stations and random station processing times.

He showed a simple method of combining the results from a previous work.

This previous work contained a model using random processing times and

breakdowns in a fixed-cycle time system. He showed this gave very good

approximations to the results of the exact model. He also outlines how this

methorl could be extended to systems with more than two stations. He

pointed out that buffer storage capacity of larger than 4 or 5 units result

in a low marginal improvement when dealing with only random processing

times. He continued to point out that in the unreliable station and

constant process time case, a buffer storage capacity should be at least

www.manaraa.com

15

equal to the mean repair time in cycles. For example, if the mean repair

time is equal to 10 cycles, a buffer storage capacity of 20 or 30 would be

appropriate. He suggested the system designer consider the two random

effects separately and decide whether to use the buffer storage capacity to

reduce the effect of random processing times or reduce the effect of

breakdowns. In the former case, a relatively small buffer capacity is

required while the latter case a much larger capacity is required.

Choong and Gershwin [Choong and Gershwin, 1987] presented a

decomposition method to evaluate the performance measures of a capacitated

transfer line with unreliable machines and random process times. The

decomposition was based on approximating the k-l-buffer system by k-l

single-buffer systems. The numerical examples indicated that the approach

was accurate as long as the probability that a machine is starved and

blocked at the same time is small. They stated the accuracy of the

algorithm didn't seem to be sensitive to the number of stations in the line.

However, it did appear to be unstable and not always converge. Dallery,

David, and Xie [Dallery et al., 1988] extended this analysis and proposed

an algorithm with a lower computational complexity. Further, in all cases

they tested, the algorithm always converged.

b. Literature review of closed systems The bulk of the literature

considers open system configurations. However, closed systems have

received some attention in recent years. The ability to analytically model a

closed system usually involves making much more restrictive assumptions.

Most studies assume unlimited buffer space, no transportation delays, and a

www.manaraa.com

16

small number of stations. To present, computer simulation is the most

widely used modeling approach to the closed system.

Suri and Diehl [Suri and Diehl, 1986] presented a model which

enables efficient analysis of certain types of closed queuing networks with

blocking due to limited buffer spaces. The networks they analyzed were

those in which the limited buffers occur in tandem subnetworks. They

assumed the buffer capacity of the loop-back buffer was infinite (i.e., in a

M-station system, the buffer between the MID and Ml stations was infinite).

The model was solved iteratively for each subnetwork and then for the

entire network. Their study assumes exponential service times for all

stations.

Kamath and Sanders [Kamath and Sanders, 1987J considered two

analytical techniques, namely the Renewal Approximations (RA) method and

the Product-Form Analysis (PFA) method. For the cases they examined, RA

method was substantially superior to that of the PFA method. The

performance models did not include the blocking due to finite buffers or

the transportation delay times.

Bastani [Bastani, 1990] considered a closed-loop conveyor system with

a single loading station and multiple unloading stations. He investigates a

two-station system that allows breakdowns and random exponentially

distributed interarrival times at the loading station. The service times of

the unloading stations, the time between failures, and the repair times of

unloading stations arc all i.i.d. random variables having and exponential

distribution. A matrix-geometric solution is obtained which provides an

approximation of the steady-state probabilities. This configuration doesn't

www.manaraa.com

17

quite fit our definition of a closed system, but its approach was felt to

merit inclusion.

2. Simulation models

Simulation is a good tool whenever the system is very difficult to

model, or when very accurate results are required. Simulation models allow

many random variable probability distributions, a variety of system

configurations, and a variety of statistical collection procedures to generate

estimates of performance. Also, there is a host of discrete-event simulation

languages (SIMAN, GPSS, SLAM, SIMSCRIPT, to name a few) that will

decrease the amount of programming effort by the system designer. These

simulation languages generally have statistics collection routines, random

number generators, event clock mechanisms, and report generators. Also,

simulation models can be implemented relatively easily in any procedural

language (such as FORTRAN, BASIC, C, PASCAL, etc.). The main restriction

to a simulation model approach is time and cost requirement of coding and

running the model. For an excellent review of simulation languages and a

discussion on procedural programming simulation techniques, the reader is

directed to the text, A Guide to Simulation [Bratley et al., 1987].

Simulation models in the literature tend to describe systems with

very specific configurations and applications. However, some authors have

used simulations to develop some insight on the impact of design

constraints on performance in a general system. Many studies use

simulation as a check for the validity of the approximations set forth by an

analytical model. The remainder of this section, however, will discuss the

www.manaraa.com

18

findings of those studies which gave way to generalizations of AAS system

design.

Freeman [Freeman, 1964] considered the operational and economic

aspects of the number and sequence of production stages and the amount

and allocation of storage capacity among the stages. He found that correct

allocation of total buffer capacity is an important consideration. He

presented several generalizations based on simulation results from a three

station production line. The generalizations are presented as follows:

Avoid extreme allocations, that is no buffer capacity between

some pairs of stages and all between other pairs.

The worse a bad stage is, relative to the good stages, the more

the buffer capacity that should be allocated to it.

More buffer capacity should be allocated between two bad

stages than between a bad and a good stage.

The optimum relative allocation is substantially invariant to

changes in the total buffer capacity

The end of a line is more critical than the front. If a bad

stage occurs toward the end of a line it should be allocated an

even larger share of the total buffer capacity.

Okamura and Yamashina [Okamura and Yamashina, 1983] investigated

the role of buffer stock in a multi-stage transfer line system. They used

simulation results to show that an n-stage line should be designed such

that the lowest stage production rate occurs in the nth stage, the second

lowest in the first stage, the third lowest in the (n-l)st stage, the fourth

www.manaraa.com

19

lowest in the second stage and so on, to maximize line production rate.

They also reported the following generalizations:

Uniform buffer storage capacity allocation does not guarantee

the optimum allocation even for balanced identical lines.

For a multi-stage line, the number of stages and buffer storage

capacity between the stages are critical design factors strongly

influencing the production rate of the system.

The total buffer capacity should be allocated to the buffers in

such a way that the difference between the two production

rates of the stages on either side of a storage point is

minimized.

3. Summary of literature

Based on the review, analytical models can be used effectively to

model systems containing two or three stations. The difficulty of

analytically modeling the occurrence of transportation delays, blocking

effects, and closed system configurations make simulation modeling the

method of choice if these phenomena are crucial to the system definition.

Also, simulation is the chosen modeling method when the systems are very

complex and contain significant interactions between stations.

B. Stochastic Optimization Algorithms

Stochastic optimization of an objective function estimated by computer

simulation is also called Monte Carlo optimization. The optimization methods

use the simulation to obtain an estimate of the objective function value,

then applies some search algorithm to find the optimal solution. Classical

www.manaraa.com

20

Monte Carlo methods include: Robbins-Monro methods, Kiefer-Wolfowitz

methods, and response surface methods. These methods are mentioned as

possible approaches, but were not investigated in order to concentrate on

the modern optimization methods of stochastic quasigradient (SQG) methods,

simulated annealing, and genetic algorithms (GAs).

1. Stochastic guasigradient methods

Stochastic quasigradient methods are stochastic algorithmic

procedures for solving general constrained optimization problems with

nondifferentiable, nonconvex functions. SQG methods allow us to solve

optimization problems where the objective function and constraints are very

complex and it is impossible to generate exact values of these functions (or

the derivatives). In the case of AAS design, the objective functions are

discrete (buffer space) or continuous (station service times) stochastic

functions. The approach is to use statistical estimates for the objective

and derivatives, then apply a standard constrained procedure for a step

direction to drive the value of the input variables to the optimum solution.

Some of the available literature on applications of SQG methods are

summarized below.

Liu [Liu, 1987] presented a list of advantages and difficulties of

using a SQG method. The advantages listed were as follows:

Flexibility in the choice "f gradient estimation methods during

iterations.

Selection between automatic or interactive modes. In automatic

mode, the algorithm can modify the step size and stopping

criteria. In manual mode, the user can change gradient

www.manaraa.com

21

estimation methods, step size, and number of observations for

function value estimation.

The difficulties in using a SQG method are:

Sensitive to the choice of starting point.

Problem with choice of a good starting step size and the choice

of the method to modify it during iterations.

Selection of various methods for quasigradient estimates.

Determination of good stopping criteria

Convergence to the optimal region if the starting point is far

away from the optimal region.

Ermoliev [Ermoliev, 1983] gives a survey of the development of SQG

methods. He gives a general overview of the method, then proceeds to

illustrate the use of SQG methods on many different problem types. He

formulated problems into four groups: general stochastic programming

problems, recourse problems, stochastic minimax problems and nonlinear

programming problems. He concludes with a computer implementation of an

example stochastic facility location problem.

Liu and Sanders [Liu and Sanders, 1988] presented the application of

the SQG method of Ermoliev and Gaivoronski [Ermoliev, 1983; Ermoliev and

Gaivoronski, Hl84] to the performance optimization of asynchronous flexible

assembly systems (AFAS). They used a simulation to obtain objective

function estimates of a closed-loop system with stations subject to random

jams/breakdowns with geometrically distributed repair times. The station

blocking effect due to finite buffers and the starvation effect due to

www.manaraa.com

22

transportation delays were included in the simulation model. They used a

hybrid algorithm which used a queuing network model to set the total

number of pallets in the system and then used an SQG algorithm to allocate

the buffer spacing to obtain optimal system throughput. Different forms of

the SQG algorithm were examined to determine the specification of buffer

sizes in a ten-station AF AS.

2. Simulated annealing

Simulated annealing is a computational technique derived from

statistical mechanics for finding near-global minimum-cost solutions to large

optimization problems. Here the objective function is assumed deterministic.

The approach is analogous to first melting a substance, then by careful

annealing, reduce the temperature slowly to obtain the desired crystalline

structures. Higher energy states (those states with higher cost function

results) can be reached, but the likelihood of acceptance decreases as the

temperature is decreased. The general method is to randomly generate a

state, say j, from the current state, i. The new state, j, is accepted if the

cost is less than that at i. Otherwise, the new state, j, is accepted if a

random number, r, generated uniformly over the interval [0,1] is less than

a real number, y, defined:

where: c(J1 = cost of new configuration

c(i) = cost of present configuration

Till = temperature at time m (m = 0, 1, 2, •••)

www.manaraa.com

23

The process is started using a large value for Till and then reducing the

value as the number of iterations increase. Therefore, a higher cost move

is accepted with higher probability in early stages than in later stages

when T. is reduced. This allows the algorithm to escape local minima

convergence. Again, the assumption is that the cost function is a

deterministic function. To be applied to the AAS buffer allocation problem,

certain modifications would have to be made in order to compensate for the

stochastic nature of the problem.

Simulated annealing has seen a number of applications in large

combinatorial optimization problems. Specifically, the algorithm has been

used extensively in the area of VLSI design [Kirkpatrick et al., 1983; Romeo

and Sangiovanni-Vincentelli, 1985; Sechen, 1988; Wong et al., 1988]. It also

has been applied to a stochastic portfolio problem [Gemmill, 1988]. The

portfolio problem deals with the problems involved with optimizing the

inventory levels of variable sized stock sheets given a random bill of

material. Some advantages can be seen to using the simulated annealing

algorithm:

Under certain assumptions of the rules used by the algorithm

and on the time spent at each temperature, the algorithm

generates a global optimum solution with probability one.

Allows "hill climbing moves" which allow the algorithm to escape

local optimization.

Some difficulties can be also seen:

Determination of a good "cooling schedule" for a slow reduction

www.manaraa.com

24

in the temperature value.

Determination of a good stopping criteria.

Lack of convergence proof for a stochastic cost function.

Allocation of computer resources. The algorithm typically

requires a very large number of iterations.

Several studies have been conducted to try and resolve some of these

difficulties.

Metropolis et ale [Metropolis et al., 1953] proposed an algorithm for

the efficient simulation of the evolution of a solid to thermal equilibrium.

It wasn't until some thirty years later that Kirkpatrick, Gelatt, and Vecchi

[Kirkpatrick et al., 1983] realized the similarity of this cooling process to

the minimization of the cost function of a combinatorial optimization

problem. They demonstrated the use of simulated annealing on a wire

routing and component placement problem in VLSI design. They also

demonstrated the application of simulated annealing to a 400 city traveling

salesman problem.

Mitra, Romeo, and Sangivanni-Vincetelli [Mitra et al., 1986] presented

a theoretical analysis of simulated annealing based on its precise model, a

time-inhomogeneous Markov chain. An annealing schedule was given for

which the Markov chain was strongly ergodic and the algorithm converged

to a global optimum. The finite-time behavior of the algorithm was also

analyzed and a bound obtained on the departure of the probability

distribution of the state at finite time from the optimum. This bound gave

an estimate of the rate of convergence and gave some insight into the

conditions on the annealing schedule which gave optimum performance.

www.manaraa.com

25

Hajek [Hajek, 1988] gave a simple necessary and sufficient condition

on the cooling schedule for the algorithm state to converge in probability

to the set of globally minimum cost states. He showed that in the special

case that the cooling schedule had a parametric form T(t) = c/log(l+t) the

condition for convergence was that c be greater than or equal to the depth

of the deepest local optimum which was not the global minimum state.

3. Genetic algorithms

As was mentioned in the introduction, genetic algorithms demonstrate

a method of representing complicated structures by a simple representation

of bit strings, and the power of simple transformations to improve these bit

strings. These transformations, based on the mechanics of natural selection

and "survival of the fittest", are reproduction, crossover, and mutation.

The algorithm is used to maximize a nonnegative deterministic objective

funciton. The remainder of this section will review the literature available

and discuss a general procedure for implementing a simple genetic

algorithm (SGA).

a. General description of the algorithm The approach is to first

discretize and encode the decision variables into a 'finite binary (or some

other appropriate alphabet) string. The binary positions have the parallel

of being the "genes" and the concatenation of the "genes" form an

"individual". Next, a series of strings are randomly generated and the

objective function results are computed. This collection of "individuals"

has the parallel of being the "population." Individuals are selected in the

reproduction step of the algorithm according to their "fitness", that is,

those individuals having greater objective function results will have a

www.manaraa.com

26

higher probability of being selected for the next generation of the

population than those individuals with lower fitness values. Two

individuals are selected during reproduction and then are "cross-bred."

This is the crossover step of the algorithm. This amounts to randomly

choosing a point along the finite string, then swapping all positions ahead

of this point between the two individuals. For example, if two individuals,

A and B (with string positions defined using a binary alphabet) were

crossed at the tenth position; individuals A' and B' would arise after

crossover (see Figure 3). The final step of the genetic algorithm is

mutation. Mutation is the occasional random alteration of a string position

from a 1 to a 0 and vice versa. The function of mutation is a secondary

role; where reproduction and crossover are search mechanisms, mutation

guards against losing potential useful genetic information at a bit position.

A = 1001 0100 °TIu 0111
B = 1100 0101 11 00 1001

A'= 1100 0101 11 11 0111
B'= 1001 0100 01 00 1001

Figure 3. Example of simple crossover

Here we have formulated a representation of a simple genetic

algorithm (SGA). The intent of presenting a general description is to

acquaint the reader with some of the terminology and to get a general feel

for the process of the genetic algorithm transformations. Perhaps Goldberg

[Goldberg, 1986] explained the ability of a genetic algorithm to process

information best:

www.manaraa.com

27

Consider a population of n strings over some appropriate

alphabet coded so that each is a complete IDEA or prescription

for performing a particular task. Substrings within each

string (IDEA) contain various NOTIONS of what's important or

relevant to the task. Viewed in this way, the population

contains not just a sample of n IDEAS, rather it contains a

multitude of NOTIONS. Genetic algorithms carefully exploit this

wealth of information about important NOTIONS by 1)

reproducing quality NOTIONS according to their performance

and 2) crossing those NOTIONS with many other high

performance NOTIONS from other strings.

b. Applications of a genetic algorithm Genetic algorithms have

seen a wide and diverse area of applications. Genetic algorithms have been

used to solve the general traveling salesman problem [Goldberg and Lingle

1985; Grefenstette et al., 1985; Whitley et al., 19891, flow shop scheduling

[Cleveland and Smith, 1989], job shop scheduling [Davis, 1985], machine

learning [Goldberg, 1985a, 1989], and even to create production rules that

pick winners of horse races [Maza, 1989]. This wide diversity of

applications is an indication of the robustness of the GA procedure to

perform well in a diverse problem domain.

c. Review of genetic algorithm literature The volume of literature

on genetic algorithms has increased dramatically since John Holland first

introduced the procedure in 1975. Specifically, with the organization of

three international conferences (1985, 1987, and 1989) and another being

www.manaraa.com

28

planned in the future (July 13-16, 1991, at the University of California at

San Diego), the amount of literature available has grown particularly in the

past five years. Also, with the publishing of the text by David E.

Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning

[Goldberg, 1989], the field of genetic algorithms has seen new interest from

a variety of fields.

In this section we will attempt to summarize the available literature

dealing with aspects of the implementation questions of a GA. The theory

of schemata and convergence properties of a GA will be discussed in the

following chapter. For a thorough treatment of the theory, the reader is

directed to the aforementioned text by Holland.

John Holland's text [Holland, 1975] discusses the theoretical

foundations of a genetic algorithm. He explores the idea of abstracting the

adaptive process of natural systems and designing artificial systems that

retain the mechanisms of the natural systems. He introduces the idea of

"implicit parallelism" where he reports that working with a population of N

individuals, you are effectively processing 1f3 information of the search

space. This has been a "well known but poorly understood" [Goldberg,

1989, p. 40] claim, but recently has received some investigative studies to

help understand this phenomenon [Grefenstette and Baker, 1989; Goldberg,

1985b].

In Goldberg's text [Goldberg, 1989], he explains the basic mechanisms

of the genetic algorithm in a very general and clear manner. He discusses

the major issues of a genetic algorithm with emphasis on computer

www.manaraa.com

29

implementation, robustness, theoretical derivation and mathematical

foundations, and applications of the algorithm. He has furnished many

Pascal examples and included computer assignments at the end of each

chapter. He also includes two chapters on the implementation and summary

of the literature regarding the use of GAs in machine learning. The text

also has the most complete bibliographic listing of GA literature to date.

Davis [Davis, 1987] edited a text that collected several papers, from a

variety of authors, dealing with simulated annealing and genetic algorithms.

In the first chapter he presents an overview of genetic algorithms and

simulated annealing. The text continues with papers discussing the issues

of premature convergence of a GA (contributed by Lashon Booker), the

minimal, deceptive problem for a GA (contributed by David E. Goldberg), as

well as many other issues concerning simulated annealing and GAs.

Goldberg and Richardson [Goldberg and Richardson, 1987] discussed a

method of "sharing functions" to enhance a genetic algorithm's ability to

optimize multi-modal objective functions. This method developed the

formation of stable subpopulations of different strings to permit the

parallel investigation of many peaks. The theory and implementation was

investigated for two, one-dimensional test functions. For a test function

containing five peaks of equal height, a GA without sharing was found to

lose strings at all but one peak, but was found that with sharing a GA

maintains approximately equally sized subpopulations at all five peaks. For

a test function with five peaks of unequal height, a GA with sharing was

found to allocate a proportionally decreasing number of strings to each

decreasing peak.

www.manaraa.com

30

Syswerda [Syswerda, 1989] investigated the applicability using a

uniform operator to replace the normal one-point or two-point crossover

operator. He developed the theoretical implications of the uniform operator

with respect to the survival rate of the schemata expressed by the

parents. He then compared the uniform operator's performance against a

variety of function optimization problems.

Fogarty [Fogarty, 1989] discussed the effect of varying the mutation

probability over time and its effect on GA performance. He used ten

different simulations of multiple burner furnaces created randomly, where a

GA was used to set the air inlet valve in order to minimize combustion

stackloss in the common flue. Two initial populations of settings were

used, one consisting of the most conservative starting point with all inlets

fully open and the other randomly generated. Mutation rates were then

varied according to four different time schedules. It was observed that

varying the mutation rate significantly improved performance of the

conservative initial population case, but not when the initial population was

randomly generated.

Richardson et ale [Richardson et al., 1989] discussed some guidelines

for genetic algorithms with penalty functions. The concept of the penalty

function is to "penalize" those observations that are infeasible in a

constrained optimization problem. Therefore, the purpose of the penalty

function is to decrease (increase) the objective function result by a

specified amount in order to achieve a global maximum (minimum) that is

feasible. Current thought is to penalize infeasible observations very

harshly. Richardson investigated this practice, and provided some

www.manaraa.com

31

guidelines to the use of these functions.

4. Summary of literature

All approaches have their merits and difficulties, but all three could

be considered as viable options to attempt the buffer allocation problem of

AASs. Simulated annealing and genetic algorithms, however, are inherently

designed for problems dealing with deterministic objective functions. The

AAS optimization problem is a stochastic function of the decision variables;

therefore, attention needs to be given to the fact that the objective

function estimate is an expectation. The simulated annealing algorithm has

been shown to converge in probability to the global optimum with

probability one, but this again is for a deterministic function. One cannot

assume the property in the stochastic case.

The SQG method is shown to be a viable option, but the algorithm

tendslo be a "greedy" algorithm in that it finds local optima quickly at

the expense of locating global optima. The simulated annealing algorithm

also presents itself as a possible optimization technique, but the long run

times required for convergence is a drawback. The genetic algorithm

presents an interesting approach and has not been attempted on a AAS

optimization problem; therefore, a genetic algorithm will be implemented and

tested.

www.manaraa.com

32

ill. METHODOLOGY

This chapter will discuss the methods involved with constructing a

simulation model of a representative AAS system, and the implementation

details of a genetic algorithm. The discussion of the simulation model will

concentrate on implementation issues concerning using an object-oriented

general-purpose language (C++ was used) for simulation modeling. The

model was validated by using a model described in Liu and Sanders [Liu

and Sanders, 1988] and comparing their results with those obtained by the

simulation model of this study.

The mathematical foundations of a genetic algorithm will also be

addressed. The formulation of schema and the effective processing of

these schema will be the concentration in the theoretical discussion. Also,

the fundamental theorem of genetic algorithms will be derived and

examined.

A. Simulation Model

In order to evaluate the impact of different buffer allocation

configurations in an AAS, a method to obtain estimates of the objective

function values is required. As discussed in Section II.A.1. b, analytical

models for a closed loop system make very restrictive assumptions for the

inputs and the number of stations allowed. Simulation allows one to design

a model that can incorporate a higher degree of stochastic complexity,

where the interactions of random variables need not be described explicitly.

However, the simulation model can require a large investment of time to

www.manaraa.com

33

design, debug, and execute the model.

Numerous dedicated simulation languages (GPSS, Simscript, Simula,

etc.) are available to reduce the amount of programming effort required in

designing a simulation model. The languages aim to make writing

simulations more concise and making the simulation mechanics more

transparent. A dedicated simulation language offers convenience, but often

at the sacrifice of control.

Central to any simulation model is several essential components

including: a clock mechanism, a source of random numbers, a listing of

upcoming events to be processed (event schedule), data structures for

statistics gathering, and data structures representing transactions,

resources, and queues. A dedicated simulation language offers routines to

automate some of these processes. However, a general-purpose

programming language offers the flexibility and the opportunity to design

all components of the simulation model. The programming language C++ was

chosen for several reasons:

A compiler was available for the PC style computer.

Data structures can be created dynamically. That is, the

memory required for a data structure is allocated at run-time

versus compile-time. This enables the efficient use of memory

by using only that which is required.

Object oriented design of data structures.

The last reason is the primary reason for choosing C++ over the C

programming language. An object-oriented language allows the grouping of

data, and the procedural routines (functions) that work on this data, into a

www.manaraa.com

34

single structure defined as an "object." For this model, this relates to

defining objects such as queues, stations, and pallets, and then designing

how these "objects" interact with one another.

A general-purpose programming language also permits the design of

the simulation system resources. Thus, the system resources can be

optimized for execution speed and reliability for the implementation of the

specific model. The critical system resources for this model were the

random number generator and the method of inserting and removing events

from the event schedule.

The random number generator implemented was the generator

proposed by Wichmann and Hill [Wichmann and Hill, 1982]. This used three

simple multiplicative congruential generators to combine and make one

uniform random number stream. The advantage of this generator is the

long cycle length (reported to exceed 2.78 x 1013).

A splay tree was used to store the upcoming simulated events. A

splay tree is essentially a special form of a binary tree. A simple binary

tree will become unbalanced by the repeated removal of the leftmost event

on the tree. The splay tree eliminates this problem by balancing the tree

with every insertion or removal of an event. The splay tree was found to

be consistently stable and perform better than a variety of other

implementations [Jones, 1986]. For a thorough comparison of

implementations, the reader is directed to the aforementioned study by

Douglas Jones.

Once a simulation model is coded, the program is checked in two

stages: verification and validation. Verification involves checking the

www.manaraa.com

35

simulation program to determine if it operates in the manner in which it

was intended to operate. That is, this is the "debugging" procedure of

any programming exercise. To validate this simulation model, as was

mentioned in the opening of this section, Liu and Sanders' model was used

as a check. Their study reported expected throughput for several system

configurations. Three of these configurations were chosen, and ten

simulation runs consisting of manufacturing 20,000 assemblies each were

used to obtain the confidence intervals. In each case, the first 10% of

each run is removed in an attempt to remove the initial transient. All

three configurations had no significant difference between the simulation

model used in this study with that used in Liu and Sanders' study. The

results can be seen in Table 1.

B. Genetic Algorithm

Genetic algorithms can be shown to possess a random, yet structured,

method for functional optimization. The discussion in Section H.B.3 was

intentionally qualitative to simply introduce the mechanics of a genetic

algorithm. Here, we will explore more rigorously the implications of the

mechanisms of a genetic algorithm. The notion of schemata and similarity

templates will be introduced and how the transformations of reproduction,

crossover, and mutation effect these.

1. Mathematical foundations

Without 'any loss of generality, consider a string A containing I

elements defined. on the binary alphabet V = {O, 1}. Where A may be

represented:

www.manaraa.com

36
Table 1. Verification of c++ simulation program code against results

reported by Liu and Sanders (1988).

Buffer Size C++ Liu &:
Hodel Sanders

Bl B2 B3 B4 B5 B6 B7 B8 B9 B10 TP 95% CI TP 95% CI

5 5 17 4 4 4 4 5 5 5 0.1275 10.0012 0.1286 10.0016

4 4 10 10 12 12 4 4 4 4 0.1285 10.0024 0.1301 10.0024

2 3 4 4 4 2 2 2 3 3 0.1273 10.0021 0.1270 10.0027

where:
TP = Throughput of last station (ie:, average number of parts produced per time unit)
Geometric Mean Clear Time = 36 time units for all station
Station Cycle Time = 5 time units for all stations

Configuration 1
Total number in system = 40 pallets
Jam rates = (0, 3, 3, 0, 0, 0, 3, 0, 0, 0) per 100 assemblies for stations
95~ confidence interval of the difference between the models = -0.0011 ± 0.0016

Configuration 2
Total number in system = 40 pallets
Jam rates = (0, 3, 0, 3, 0, 3, 0, 0, 0, 0) per 100 assemblies for stations
95~ confidence interval of the difference between the models = -0.0016 ± 0.0025

Configuration 3
Total number in system = 20 pallets
Jam rates = (0, 3, 0, 0, 2, 0, 0, 2, 0, 0) per 100 assemblies for stations
95~ confidence interval of the difference between the models = 0.0003 ± 0.0027

A = al8za3a4 ••• a,

Here each a i represents a binary feature (sometimes referred to as a gene

or allele), and A represents the concatenation of the binary features

(sometimes referred to as an individual). If we now consider a population

of individual strings, Aj' j = 1, 2, 3, ••• , n, contained in population A(t) at

generation't, the notion of schemata can now be addressed.

Consider a schema H defined on the three-letter alphabet v+ = {O, 1,

*}, where the * symbol is a wild card symbol which matches a 0 or 1 at a

particular position. Therefore, if a string Aj has l binary positions, there

are 3' schemata or similarity templates defined. For the entire population,

www.manaraa.com

37

there are at most n' t- schemata since each individual is a representation of

z! schemata. In general, a string with alphabet having cardinality C, there

are (C + 1)' schemata defined with at most n' d schemata in the population.

To establish a means of differentiating the properties of these schemata,

schema order and defining length are used.

Schema order, denoted o(H), is defined to be the number of positions

that are fixed in a certain schema. For example, using a string length of

seven (~ = 7), a schema 1**01** has an order of 3, whereas the schema

0** has an order of 1.

Schema defining length, denoted B(H), is defined as the distance (in

allele positions) from the first to the last fixed string position. For

example, the schema 1**01** has a defining length of 4. This can be seen

by subtracting the first fixed position's index from the last fixed position's,

or 5 - 1 = 4, In the other example schema, **0****, has a defining length

of O.

In order to understand how the schema are processed, the expected

number of schemata in a population after reproduction can be determined.

To restate the definition, reproduction involves randomly selecting

individual strings with replacement, weighted according to the relative

"fitness" of an individual string. A string Aj has probability pselect, = f/L"
of being selected where I j is defined as the fitness of string j. The

process of selecting an individual for reproduction has frequently been

referred to as spinning a biased roulette wheel where each slot's dimension

is sized according to string fitness. Now consider a schema H contained in

www.manaraa.com

38

the population A(t) having m examples of this schema, denoted m=m(H,t).

The average fitness for a particular schema at time t will be denoted f(H)

and can be calculated using the following expression:

.1(11) ,.
m(H,t)

The expected number of schema in a nonoverlapping population of size n is

then given by the equation:

m(H, t+ 1) = m(H, t) J(I!'
f

- EJj where: f-
n

That is, those schema with average fitness greater than the population

average fitness expect to have an increasing number of representative

strings, while those schema with average fitness below the population

average will expect to receive a decreasing number. Thus, reproduction

allocates increasing numbers of high performance schemata in parallel.

Reproduction allows the algorithm to distinguish between high and

low performance schemata, but does nothing in the way of exploring new

regions of the search space. The exploration process _ is performed

primarily by crossover and secondarily by mutation. A simple crossover

operation, to review, proceeds in two steps. First, two individual strings

are chosen at random from the newly reproduced strings. Second, a

crossover is performed with probability Pc' with a crossover occurring at a

www.manaraa.com

39

uniform randomly selected position k along the string length less one

[1, ~1]. Thus, a particular schema is disrupted if a crossover occurs

within the interval of the first or last fixed position of the schema. As an

example, the string Al and a representative schema HI is defined as follows:

Al = 0 1 1 1 0 0 1 1

HI = 0 * * 1 0 * * *
If a crossover occurs at a point between the first and fifth positions,

schema HI is disrupted (unless AI's mate is identical, with the probability

of this occurring neglected giving a conservative estimate for the

probability of schema disruption). Therefore, the probability that a schema

survives depends on the defining length of the schema and the length of

the string. The survival probability Ps will then have a lower bound

described by the expression:

Incorporating this expression into the schema expectation equation:

m(H,t+l) ~ m(H,t) j(~ [t-pc &(H)]
f I-I

The final operation of a genetic algorithm is mutation. Mutation

occurs at each position along the string with probability Pm. Hence, the

position survives with probability (1 - P,) and a particular schema will

survive with probability (1 - p.)O(H). For small values of Pm this can be

approximated by 1 - o(H)· p. and the schema expectation can now be written

www.manaraa.com

40

(ignoring cross-product terms):

m(H,t+l) t!! m(H,t)ft.l!> [l-Pc tJ(H)_p",O(ll)], ~ t!! 2
. f ~-1

This result is the fundamental theorem of genetic algorithms. The schema

theory describes how a genetic algorithm allocates an increasing number of

trials to low order, short defining length, above average schema. However,

the schema theory alone does not guarantee convergence for an arbitrary

problem. This merely describes how a genetic algorithm processes many

schema in a parallel fashion. Holland [Holland, 1975] estimated that by

processing n strings, an order of n 3 schemata are usefully processed. This

type of leveraged search he called implicit parallelism.

Several authors have addressed the issue of lack of guaranteed

convergence. Bethke [Bethke, 1981] examined some sufficient conditions for

simple GA convergence using Walsh function analysis. Goldberg. [Goldberg,

1990] described a selection procedure for genetic algorithms called

Boltzmann'tournament selection. Here he borrows the concept of thermal

equilibrium and the Boltzmann distribution from simulated annealing and

adapts them to a genetic algorithm. This allows the implementation to

exhibit the same asymptotic convergence as the simulated annealing

algorithm.

2. Implementation

The implementation of a simple genetic algorithm was performed using

the c++ programming language. The choice of using C++ over any other

general-purpose programming language was not as critical an issue as it

www.manaraa.com

41

was in the case of the simulation model. Typically, any programming

language which contains the ability to group data into structures would

suffice.

The program was designed for generality at some expense' of program

execution speed. The genetic algorithm optimization program, named

GENOPT, manages all genetic operations and accumulates population

statistics. The calculation of the objective function result was purposely

not incorporated with the GENOPT program. This allows GENOPT to be

applied to any executable program that generates an objective result, not

just those programs compiled and linked with the GENOPT main program.

GENOPT merely needs the name of the function calculation program (FCP)

and any command line arguments, a FCP input file name, and a FCP

objective function output file name. This was deemed desirable since the

GENOPT program might be applied to simulation models coded in languages

such as GPSS or Simscript in the future.

C. Application of a GA to an AAS Buffer Allocation Problem

The application of a simple genetic algorithm to the AAS buffer

allocation problem will be the principal objective of this study. In order to

gauge the effectiveness of a GA relative to other approaches, the analysis

of Liu and Sanders [Liu and Sanders, 1988] will be closely followed. This

will allow a direct comparison to the SQG method used in their study.

As was shown in Section HI.A with the verification of the simulation

model (Table 1), a 95% confidence interval of the difference between Liu

and Sanders' model and the c++ model included zero for the three

www.manaraa.com

42

configurations tested. This suggests that the two models are not

significantly different. Therefore, we will adopt their system specifications

and use them for comparison.

The system used by Liu and Sanders was a ten-station, asynchronous

closed-loop automatic assembly system. All stations had constant service

times, random failures with geometrically distributed repair times, and

transportation times of 1 time unit per buffer storage unit. The number of

pallets were fixed at 40 for the first two configurations and at 20 for the

last. It was assumed that there was no scrapping of assemblies due to

failures.

www.manaraa.com

43

IV. RESULTS

The results of this study are assembled into two sections. The first

section will report the results of using a genetic algorithm to optimize four

different deterministic objective functions where the optimal solution is

known. This will serve as a benchmark on the performance of the simple

genetic algorithm under a variety of objective functions. The analysis will

concentrate on the effects of population size, crossover probability, and

mutation probability on GA performance.

A. GA Performance on Deterministic Functions

To verify the performance of the genetic algorithm coded in the

GENOPT program, four different objective functions were used. These

functions are presented in Table 2. The first function is maximized while

the remaining functions are minimized. Functions!,.' ~, and ~ were used

by DeJong [DeJong, 1975] in his dissertation, "An Analysis of the Behavior

of a Class of Genetic Adaptive Systems." DeJong's study consisted of

eValuating GA performance under a variety of conditions using a five

function testbed. The three functions used here were the first thr~e of

the five. Since the objective of this study is to apply a GA to an AAS

buffer allocation problem, the four functions were deemed sufficient to

verify the working of the GENOPT program.

In order to evaluate the performance of the GA, a method of

quantifying system performance is required. DeJong used two functions to

quantify GA pel-formance and these functions will be used here. He defined

www.manaraa.com

Table 2.
44

Deterministic objective functions used in GA parameter
performance evaluation

ft(x) = x lO Osx~l
3

f2(xJ - Ex; -S.12~,~S.12
I

f3(x~ = lOO(X;-x.Jz+(l-xlf -2.048~,~2.048
5

4(xJ = L integer(xJ O~I~10.48
1

a measure of the convergence and a measure of the ongoing performance.

He called these measures, off-line and on-line' performance respectively.

On-line performance under strategy s of function i can be expressed:

1 T
01.3)=-EIl.t)

Tl

where f/.t) is the objective function value for trial t. This is simply the

running average of all individuals up to and including individual t. The

strategy is defined as the current parameter settings of the genetic

algorithm (i.e., population size, crossover probability, mutation probability,

etc.). The off-line performance under strategy s of function i can be

expressed:

• 1 T
0, (3)=-Ej,(t)

T 1

where ~(t~ J._~ U'(l) ~(2) nt)} This is a running average of the best J I J = veoJ. f\. ,J I , ... , J f\. •

performance values for each generation up to a particular time.

www.manaraa.com

45

1. Choice of population size

With these performance measures now defined, a thorough investiga

tion of how the performance of a GA is impacted by choice of population

size, crossover probability, and mutation probability can be achieved. The

population size was the first parameter studied. The population size was

set at 50, 100, 200, 300, and 600 individuals while maintaining a constant

crossover probability, Pc = 0.6, and mutation probability of Pm = 0.001. The

crossover and mutation probabilities were chosen according to previous

findings in the literature that these settings are a reasonable compromise

between good on-line and off-line performance. The results of this analy

sis are presented in Figure 4 through Figure 11.

As can be seen in the figures, off-line performance tends to improve

as the population size increases. This can be explained by the greater

number of individuals in the gene pool from which a best performer can be

drawn. On-line performance, on the other hand, tends to improve as

population size decreases. The individuals of the smaller population sizes

experience more genetic operations, thus the population contains more

"good" performers on average, but may be over-zealous and lose informa

tion at certain bit positions.

An example of this can be seen in the GA optimization of It with a

population size of 30 (see Figure 12). The optimum solution for this

function would be a string consisting entirely of l's. However, as can be

seen, aU population strings have a 0 at certain bit positions. The only way

to regain 1 's in these positions is to perform a mutation operation.

www.manaraa.com

46

1.00 l:~~~:::~::::::!!~~~~~~~ ---0.98 50
-+-

'""' 0.96 !~~:=======:=-:::;~~~::~ ~ b 0.94 200

~0.92+-~------------~~--------------------~ -e-
~ 300
~ 0.90 -H-
>
~ 0.88 600
c:
'f _0.86+-------.. ------------------------------~ -o

0.B4 h!Riiiiiiir----------------j

0.82 +-1'---------------------1

O.BO+-------~------~-------.------~------~
o S 10 1 S

Trial Number. t
(Thousands)

20 2S

Figure 4. The effects of population size on off-line
performance for function fl

1.00....--, ---50
-+-
100 0.90 t-----:-;::~~~~:::::;;;~~:=l

~ O.BO ;;-

i
01
o
~O.70+-~~~--------------------------------~
> <
~
'f 0.60 -!-='1lY-------------------__I
8
O.SD~--------------------I

O.40+----T----~---~---T---~ o S 10 15
Triol Number, t

(Thousands)

20 25

-e-
300
-H-

600

Figure 5. The effects of population size on on-line perfor
mance for function f 1

www.manaraa.com

47

1.6...------------------------, r----1.4 ++-------------------_; 50
--+-

~t.2~---------------------;
100

~ --o I ~ 200
.t.O~~-----------------------; -e-
~
C i"i ill 300
~ 0.8 1\ ~
'" ~. 600
~0.6 11 -
! :~~'" a 0.4 -+----'\'k~.;~,,-----------------1

0.2c:~~~ .. ~"'" ~ __ ~ 0.0
Figure 6.

o S 10 t s
Trial Number. f

(Thousands)

20 2S

The effects of population size on off-line
performance for function f2

25...------------------------------------. ---50
--+-

20~b_----------------------------------4 100
~ o --200
m15~~~o----------------------~ -e-
~ 300
i ~
>

~ 10 600
c
T
8

Figure 7.

Trial Humber. t
(Thousands)

20 25

The effects of population size on on-line
performance for function f2

www.manaraa.com

48

1.4~--~

1.2~--~

;..

Yl.0+-~--------------------------------------~
o

50
-+-
100 --200

&O.8+-~--------------------------------------~ -eo 300 ..
~ -w
~0.6~~~------------------------------------~ 600
GI
C

'f
:O.4+---~~----------------------------------~
o

Figure 8.

5 lQ 15
Trial Number, t

(Thousands)

20 25

The effects of population size on off-line
performance for function f 3

400~--------------------------------------~ ---350~~------------------------------------~ 50

~300+-~r-------------------------------------~

-+-100
.::. --o 200
.; 250 -e-
~ 300
a200~4---~~~------------------------------~ » -w-
~ 600
~ 150+-~r-----~~~~~~--------------------~

'f

d 100~~~~~~~~~~~~~~;;~~:::::l

Figure 9.

5 10 15
Triol Number, t

(Thousands)

20 25

The effects of population size on on-line
performance for function f3

www.manaraa.com

49

6.---------------------------------------~----

~ 50
5~--~ -+-

100 -:;:-
y -o 4 -Hffi--------------------------------------l ZOO

g, k
c ~ 300
i3+-~~------------------------------------~
> ~ ~

~ i~~ ~
12+-~~~----------------~.------------------~

5 ~
-.;..-~~

o~~~~~
o 5 10 15

Triol Number, t
(Thousands)

20 25

Figure 10. The effects of population size on off-line
performance for function f.

25~------------------------------------~ ---50
-+-

20~=-------------------------------------~ 100 --200
i15 -8-

~ 300 ...
~ ~

~ 10+4~~~------~~------------------------~ 600
c
'f
8

5 10 15
Trial tbnber. t

(Thousands)

20 25

Figure 11. The effects of population size on on-line
performance for function f ..

www.manaraa.com

P
o

p
u

la
ti

o
n

:
19

N
U

ll
S

tr
in

g

G
EN

ET
IC

A

LG
O

RI
TH

M

PO
PU

LA
TI

O
N

R

EP
O

R
T

fo
r

lC
P

fi

le
:

fl
.e

x
e

P
o

p
u

la
ti

o
n

:
20

O
b

je
c
ti

v
e

In

N
U

ll
p

a
re

n
ts

S

tr
in

g

O
b

je
c
ti

v
e

In

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
~
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

1
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

0
1

:
1

)
(1

4
,

5
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

0
1

2

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l:

2
)

(1
4

,
5

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

&
-0

1

3
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

0
1

:
3

)
(

2
,

3
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

0
1

4

)
11

11
11

00
01

10
00

00
01

00
11

00
11

00
01

8

.6
7

1
2

9
2

3
3

e-
O

l:

4
)

(
2

,
3

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l
5

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l:

5
)

(3
0

,2
1

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l
6

)
11

11
10

00
01

10
00

00
11

00
11

00
11

11
01

7

.3
9

1
5

2
1

3
3

e-
O

l:

6
)

(3
0

,2
1

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l
7

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

. 6
7

1
9

6
4

4
0

e-
0

1
:

7
)

(
3

,2
9

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

8
-0

1

8
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l:

8

)
(

3
,2

9
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
8

-0
1

9

)
11

11
10

00
01

10
00

00
11

00
11

00
11

11
01

7

.3
9

1
5

2
1

3
3

e-
O

l:

9
)

(
4

,1
6

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
0

1

10
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l:

1

0
)

(
4

,1
6

)
11

11
11

00
01

10
00

00
01

00
11

00
11

00
01

8

.6
7

1
2

9
2

3
3

e-
0

1

1
1

)
11

11
11

00
01

10
00

10
11

00
11

00
11

11
01

8

.6
7

4
6

4
9

2
3

e-
O

l:

1
1

)
(

2
,1

1
)

11
11

11
00

01
10

00
10

11
00

11
00

11
11

01

8
.6

7
4

6
4

9
2

3
e-

O
l

1
2

)
11

11
10

00
01

10
00

00
11

00
11

00
11

11
01

7

.3
9

1
5

2
1

3
3

e-
O

l:

1
2

)
(

2
,1

1
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
&

-0
1

1

3
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l:

1

3
)

(2
7

,
5

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l
1

4
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l:

1

4
)

(2
7

,
5

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l
1

5
)

11
11

10
00

01
10

00
00

11
00

11
00

11
11

01

7
.3

9
1

5
2

1
3

3
e-

O
l:

1

5
)

(
4

,2
0

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l
1

6
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l:

1

6
)

(
4

,2
0

)
11

11
11

00
01

10
00

00
01

00
11

00
11

00
01

8

.6
7

1
2

9
2

3
3

e-
O

l
1

7
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l:

1

7
)

(
3

,1
9

)
11

11
10

00
01

10
00

00
11

00
11

00
11

11
01

7

.3
9

1
5

2
1

3
3

e-
O

l
1

8
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l:

1

8
)

(
3

,1
9

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

&
-0

1

1
9

)
11

11
10

00
01

10
00

00
11

00
11

00
11

11
01

7

.3
9

1
5

2
1

3
3

e-
O

l:

1
9

)
(1

8
,

1
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l

2
0

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l:

2
0

)
(1

8
,

1
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l

2
1

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l:

2
1

)
(1

6
,1

8
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l

2
2

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l:

2
2

)
(1

6
,1

8
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
8

-0
1

2

3
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l:

2

3
)

(2
3

,
9

)
11

11
10

00
01

10
00

00
11

00
11

00
11

11
01

7

.3
9

1
5

2
1

3
3

e-
O

l
2

4
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l:

2

4
)

(2
3

,
9

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
0

1

2
5

)
11

11
11

00
01

10
00

00
10

00
11

00
11

11
01

8

.6
7

1
6

2
8

8
5

e-
O

l:

2
5

)
(1

8
,1

4
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

0
1

2

6
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
&

-0
1

:
2

6
)

(1
8

,1
4

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
0

1

2
7

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l:

2
7

)
(2

9
,1

6
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l

2
8

)
11

11
11

00
01

10
00

00
10

00
11

00
11

11
01

8

.6
7

1
6

2
8

8
5

e-
O

l:

2
8

)
(2

9
,1

6
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l

2
9

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l:

2
9

)
(

8
,3

0
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

0
1

3

0
)

11
11

11
00

01
10

00
00

11
00

11
00

11
11

01

8
.6

7
1

9
6

4
4

0
e-

O
l:

3

0
)

(
8

,3
0

)
11

11
11

00
01

10
00

00
11

00
11

00
11

11
01

8

.6
7

1
9

6
4

4
0

e-
O

l
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

G

e
n

e
ra

ti
o

n

to

ta
ls

:
M

in
im

um
:

7
.3

9
1

5
2

1
3

3
e-

O
l

M
ax

iJ
lU

II
:

8
.6

7
4

6
4

9
2

3
e-

0
1

A

v
er

ag
e:

8

.5
8

6
6

4
6

2
2

e-
O

l
M

u
ta

te
d

:
0

C
ro

ss
ed

:
11

==

==
==

==
==

=:
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

==
==

F
ig

u
re

 1
2.

G

en
et

ic
 a

lg
o

ri
th

m
 r

e
p

o
rt

 f
o

r
g

e
n

e
ra

ti
o

n
s

19
 a

n
d

20

 f
o

r
fu

n
c
ti

o
n

f 1

0
1

0

www.manaraa.com

51

2. Choice of crossover probability

The choice of crossover probability was the next GA parameter

studied. To review, the crossover probability is defined as the likelihood

of mating two individual strings after reproduction. The implementation of

this GA parameter amounts to generating a random number x, then checking

whether the random number is less than the crossover probability p. If c

x < Pc' perform a crossover to obtain two new child strings, else leave

parent strings unchanged in the future generation. The crossover

probability was set at 0.2, 0.4, 0.6, 0.8, and 1.0 and the effects upon off-

line and on-line performance was observed (see Figure 14 through

Figure 20). From the analysis of the choice of population size, a population

size of 100 was chosen while maintaining the mutation probability at the

previously set level of .001.

In general, a crossover probability of 0.6 or 0.8 seemed to achieve

acceptable off-line and on-line performance. The GA performance was

observed to be less dependent on choice of crossover probability than for

choices of population size and mutation probability. An exception was

observed, however, for the function 13" This can be easily explained by

examination of the function itself. The function is minimized when both xl

and x 2 are equal to 1, but will experience good results whenever Xl = Xl"

This leads to high performance schema that have high defining lengths

8(H). Thus, higher crossover rates will disrupt these schema with a higher

probability.

www.manaraa.com

1.00

0.95
-:;:-....,
11
0

'DO 0.90
m
c
'-
Ql
>

4(

QI 0.85
c:.
T --0

O.BO

0.75
0 5

52

10 15
Trial NLn1ber, t

(Thousands)

20 25

---0.2
-+-
0.4 --0.6
-e-
0.8
--M--

1.0

Figure 13. The effects of crossover probability on off-line
performance for function f 1

1.00,.---------------------, ---
0.95 +--------------:-:-:= IIBa.1I1l ~

L---=-"'~~~~~==---J 0.4 ,... 0.90

~ 0.6
.O.85+--~~~~--------------~ -8-

0
& 0.8
iO.80+---~~-----------------~ --M--
>
~ In
!0.75+-~~------------------------------~
T
c
o O.70+--frI-------------------~

0.65 +-4f--------------------\

0.60~---~---~---~---~--~
o 5 10 15

Trial NlITlb8l', t
(Thousands)

20 25

Figure 14. The effects of crossover probability on on-line
performance for function fl

www.manaraa.com

~ -b

2.5

2.0

rD 1.5
C)
c
L
~
>

.0(

~ 1.0
c
T
~ -a

0.5

0.0

\
I~

~\ Ii

~
o 5

53

10 15
Trial Number, t

(Thousands)

20

r------0.2
-+-
0.4 --0.6
-e-

0.8
-+C-

1.0 -

25

Figure 15. The effects of crossover probability on off-line
performance for function fz

16

14

-=- 12
0'
.10

t
i a
> ..
~ 6
c
a 4

2

o

~

o

~

~ ~
~~~ 

5 10 15 
TrIal 1Vnber, t 

(Thousands) 

r------0.2 
-+-
0.4 --0.6 
-e-
0.8 
-+C-

~ 

"'" 

20 25 

Figure 16. The effects of crossover probability on on-line 
performance for function f2 



www.manaraa.com

2.5 

2.0 ,... .. ....... • 0 

ai 1.5 
Cl 
c ... 
Q) 

> 
~ 
Q) 1.0 
c: 
T -... 0 

0.5 

0.0 
0 5 

54 

10 15 
Trial Number. t 

(ThousandS) 

20 25 

---0.2 
--+-
0.4 
-.-
0.6 
-e-

0.8 
-M-

1.0 

Figure 17. The effects of crossover probability on off-line 
performance for function f 3 

250 

200 

i 150 
sa 
i 
> 

"" Q) 100 
c 
T 
d 

50 

o 

I ~ 

I~ 
11 • 

~ 
~ ~ .... ~ 

o 5 10 15 
Trlo1 Nllnber. t 

(Thousands) 

20 

----0.2 
--+-
0.4 

---0.6 
-e-
0.8 
-M-

1.0 
L...--

25 

Figure 18. The effects of crossover probability on on-line 
performance for function f3 



www.manaraa.com

6 

5 
....... -...... • 04 
0; 
CI 
0 

~3 
> 
~ 

~ c: 
1'2 -.... 0 

55 

Triol Number. t 
(Thousands) 

---0.2 
-+-
0.4 
-..-
0.6 
-e-

0.8 
-H-

1.0 

Figure 19. The effects of crossover probability on off-line 
performance for function f. 

18 

16 

14 

i 
~ 10 
i 
~ 6 

GI c: 
'f 6 
5 

4 

2. 

o 

~ 

o 

'\ 
~ 

\~'. 
~, 

~ 

5 10 15 
Trial I'bnber. t 

(Thousands) 

----0.2 
-+-
0.4 
-*-
0.6 
-e-
0.8 
-H-

1.0 
'--

20 25 

Figure 20. The effects of crossover probability on on-line 
performance for function f. 



www.manaraa.com

56 

3. Choice of mutation probability 

The choice of mutation probability was the final GA parameter 

studied. Again, the mutation probability involves the switching a bit 

position from its current state to another state at random. For our case, 

this amounts to switching a bit from a 1 to a 0 or vice versa. The 

mutation probability was set at the levels .001, .005, .01, .02, .05, and .1 

using a population size of 100 and a crossover probability of 0.6 (see 

Figure 21 through Figure 28). 

Mutation probability was observed to have a large effect on both off

line and on-line performance. The effect was particularly evident with on

line performance. A mutation probability of 0.1 is changing 1 of every 10 

bits exchanged during crossover on average. This greatly counteracts the 

productivity of the crossover and reproduction operations. Also, 0.1 is 

approaching a mutation probability of 0.5, which is a random walk of the 

search space at any population size. 

A mutation probability of .001 or .005 seemed to enjoy the best 

performance. At this level, the mutation operation is sufficient to introduce 

new bit sequences without undermining the reproduction and crossover 

transformations. 



www.manaraa.com

1.00 

0.98 
........ -...., • 00.96 
ri 
Cl 
c 
i 0.94 
> 

4( 

III c T 0.92 ... ... 
0 

0.90 

0.88 
0 5 

57 

10 15 
Trial Number, f 

(ThousonQs) 

20 

---.001 
-+-
.005 
~ 

.0 1 
-e-
.02 
~ 

.05 
-.... 
.1 

25 

Figure 21. The effects of mutation probability on off-line 
performance for function f 1 

1.0~--------------------------------------~ 

0.5+-~------------------------------------~ 

O .• +--------r------~------~--------~------~ o S 10 lS 
Trial tlJrnber. t 

(Thousands) 

20 25 

Figure 22. The effects of mutation probability on on-line 
performance for function fl 



www.manaraa.com

58 

1.2~----------------------------------------. 

1.0~--------------------------------------~ 

~ ...., 
~O.8~~--------~~"~--------------------~ 

5 10 15 
Trial t-Iumber. t 

(Thousands) 

20 25 

---.001 
-+
.005 

Figure 23. The effects of mutation probability on off-line 
performance for function f2 

25~---------------------------------------' 

i15+-~--------------------------------------~ 

8' ... 
II 
> 

--.001 
-+
.005 

--.01 
-e
.02 

~ 10+-~~------------------------------------~ .05 
I: -.tr-
'f 1 I: • 
o 

oL-~~~~~ 
o 5 10 15 

Trial Number. t 
(ThOUSandS) 

20 25 

Figure 24. The effects of mutation probability on on-line 
performance for function f2 



www.manaraa.com

59 

1.4~--------------------------------------~ 

1.2 H-----------------------1 

...... 

--.001 
--+
.005 

~1.0~~---~~----------------------------~ -.-
o .01 

&0.8 -e-
c .02 
L.. 

~ ~ 
~ 0.6 .05 
~ -.-

I~~~~., :: 0.4 
o 

0.2 

O.O+-------~------._------,_------.-------~ 
a 5 10 15 

Triol Number, t 
(Thousands) 

20 25 

Figure 25. The effects of mutation probability on off-line 
performance for function f3 

350.0~-------------------. --.001 
300.0 +4-------------------------------------{ --+

.005 
§ 250.0 +M*'-----------------------------------{ --

.01 

~ 200.0 ~~:..:~~~~ ...... - ......... --.. -----1 -e-w .02 
i ~ 
> 
~ 150.0 .05 

'f .1 

! t~~~~:=::::~~~~:::::::::::::::i -.-8 100.0 

50.0 1-~~:::~+++:;:;:;:;:;:::;:::;::::~::::1 

o.oL-~::::::~~~~;;;j 
o 5 10 15 

Trial Number, t 
(Thousands) 

20 25 

Figure 26. The effects of mutation probability on on-line 
performance for function f3 



www.manaraa.com

6 

5 
...... ... ..... • 04 

rD 
C) 
0 

~ 3 
> 

..c( 

II 

=f2 --0 

5 

60 

10 15 
Trial Number, t 

(Thousands) 

20 25 

---.001 
-+-
.005 --.01 
-a-
.02 
-M-

.05 
-.... 
.1 

Figure 27. The effects of mutation probability on off-line 
performance for function f4 

18 

16 

14 ...... .... ....., 
o 12 

Ii 
~ 10 .. 
GI 
> 

B 4( 

GI 

~ 6 
t: 
0 

4 

2 

o 
o 

'\ 
~ -. .......... 

~ 
~~b 
\~ 
'\.. ~ --...... 

5 10 15 
Trial Number. t 

(Thousands) 

r-----.001 
-+-
.005 
....... 
.01 
-s-
.02 
-M-

.05 
-.... 
.1 -

':'~ ~ 

20 25 

Figure 28. The effects of mutation probability on on-line 
performance for function f. 



www.manaraa.com

61 

4. Fitness scaling 

At the beginning of a' GA run, the population most likely contains few 

high performing individuals with many medium to low performing ones. If 

reproductive selection using the normal selection criteria ( pselect, = ~I L~) 

is allowed, the few high performing individuals dominate the subsequent 

generation. This is an undesirable effect since many high performing allele 

positions (gene or bit positions) may be lost early in the run. This 

phenomenon is a leading cause for premature convergence of a GA. 

At the end of GA run, a different problem arises. As the run 

matures, the population stabilizes and the population average fitness is 

close to the best fitness value. The reproductive selection now tends to 

produce generations comprised of a high proportion of these average 

performers, rather than concentrating on those high performing individuals. 

In both of these cases, fitness scaling can help enhance the 

reproductive selection. A linear scaling was proposed by Goldberg 

[Goldberg, 1989] and is used in this study. The linear scaling function can 

be expressed as follows: 

f = af+b 

where the scaled average should remain the same as the original average 

and all scaled observations do not violate the non-negativity restraint. 

Goldberg suggests using a scaling such that the following expression holds: 

where C is the expected number of copies desired for the best 
IIfIIlt 



www.manaraa.com

62 

individual in the subsequent generation. Goldberg states that a value of 

1.2 to 2 has been successfully used in small populations (n = 50 to 100). If 

the generation has a few individuals which are far below the average 

fitness, the value of C
malt 

will have to be reduced. The fitness values can 

then be scaled such that the population average fitness remains unchanged 

and Imtn = o. 
The fitness scaling procedure presented in Goldberg's text was 

implemented and examined in order to determine if improved GA 

performance could be realized. The scaled GA runs were compared to the 

simple GA runs to observe any increased performance (see Figure 29 and 

Figure 30) for C
malt 

= 2.0. As can be seen, fitness scaling increased both 

off-line and on-line performance when a population size of 50 was used. 



www.manaraa.com

63 

1.00 

0.95 ,... -'-' • 0 

riO.90 
Ol 
c 
"-
III 
> 
< 
III 0.85 
c: 
T --0 

0.80 

0.75+------.------,-----~,------r----~ 
o 5 10 15 

Trial NLrnber, t 
(Thousands) 

20 25 

---50 (scaled) 
-+-
1 00 (sccled) 
"""'*-
50 
~ 

100 

Figure 29. The effects of scaling fitness values on off-line 
performance for function fl (n = 50 and 100) 

1.00~--------------------------------_. .-------~ 

,,0.90+-----~~~~ .. ~~~~-=~------~ -'-' o 
_O.85+---~~~~~------------------~ 

G:I 
Ol a 

---50 (scoled) 
-+-
100 (scaled) -50 
~ 

100 
iO.80+---~~~~----------------------~ ~------~ 
> 
< 
~0.75+-~~----------------------------~ 

1 
o o. 70 ~""-------------------------------~ 

0.65+4--------------------------------~ 

0.60 ~-----r---___r--____r---r__--__I 
o 5 10 15 

Trial Number, t 
(Thousands) 

20 25 

Figure 30. The effects of scaling fitness values on on-line 
performance for function fl (n = 50 and 100) 



www.manaraa.com

64 

B. GA Performance on an AAS Simulation Model 

As was described previously, this analysis will parallel Liu and 

Sanders' work where they evaluated the performance of a SQG method as 

related to the AAS buffer allocation problem. Liu and Sanders tested SQG 

performance for a variety of models. Of these models, three system 

configurations were chosen to examine GA performance. 

The objective of the GA is to search and locate those buffer 

allocation configurations which maximize system throughput. Since we are 

interested in only those highest performing individuals, we will be 

concerned primarily with off-line performance of the GA. More importantly 

we will be interested in whether or not the GA can outperform the SQG 

method. 

The first configuration was tested allowing all buffer storage 

capacities to vary from 1 to 32 units. Individual station buffer capacity 

was then able to be represented in 5 bit positions allowing the system to 

be defined by a string of length , = 50. Two GA runs were performed 

having population sizes n = 50 and n = 100. The off-line performance (see 

Figure 31) was improved by using the larger population size. However, 

when a 95% confidence interval was constructed, neither run could 

outperform the SQG method (see Table 3 and Table 4). However, the GA 

run having a population size of 100 could not be rejected as an inferior 

configuration (at a 5% level of significance). 

The first configuration was then tested allowing storage capacities to 

vary from 1 to 16 units. This reduced the search space by 210 



www.manaraa.com

65 

configurations, with the thought that the GA might search out high 

performing configurations quicker. As is shown in Table 5, the GA 

performed better than the previous run, but still was unable to outperform 

the SQG method at a statistically significant level. 

The second and third AAS configurations were attempted while 

keeping the buffer capacities limited between 1 and 16 with a population 

size of 100. The results (see Table 6 and Table 7) show similar GA 

performance, however for the third configuration the GA did slightly better 

than the SQG method. This was not at a statistically significant level, 

however. 



www.manaraa.com

66 

o.137.-----------------------------------~----~~~ 

----0.137 +--+-~--------....,....,____,::c>""'il'__----:......:lfi 50 
--+

_ O. 1 36 +--+----~---___,J.~------~I==!!!!~ 100 
..
~ • 
oO.136T-~------~-----=----~~FW~------------~ 

rD-

~0.135+-+----r~--------------------------------~ 
~ r» 
~ 0.1 35 +-------,f------------------------------------~ 
Q) 

c 
10.134+--~------------------~ 
.... .. 
o 0.134+---~------------------------------------~ 

0.133 -t-:7----------------------I 

0.133+----.----.-----.----.---~ 
o 500 1000 1500 2000 2500 

Trial Number, t 

Figure 31. The effects of population size on off-line performance for AAS 
simulation model throughput for configuration 1 



www.manaraa.com

67 

Table 3. Confidence interval estimates for GA and SQG best buffer 
configurations (buffer capacity allowed to vary from 1 to 32 
units, GA population size n = 50) 

Buffer Capacity 

Optim. Method B1 B2 B3 B4 B5 

SQG 5 5 17 4 4 

GA 23 19 14 17 17 

Estimation of throughput by C++ simulation 

Optim. Method Buffer 

SQG 

GA 

Configuration 

Difference (GA - SQG) 

B6 B7 B8 B9 

4 4 5 

9 7 5 

model 

95% C.I.t 

0.1275 ± 0.0012 

0.1249 ± 0.0020 

5 

7 

-0.0026 ± 0.0011 
I Confidence interval estimates calculated using 10 independent 
simulation runs of 20,000 assemblies each. For each throughput 
estimate, the first 10% is removed to in an attempt to eliminate the 
effects of initial transient. This technique will be used for all 
remaining tables unless otherwise noted. 

Configuration· 1 settings: 

Total Number of Pallets in System = 40 pallets 

B10 

5 

14 

Jam rates = (0, 3, 3, 0, 0, 0, 3, 0, 0, 0) per 100 assemblies for stations 
Geometric Mean Clear Time = 36 time units 
Cycle Time = 5 time units for all stations 
Transport Time = 1 time unit per buffer unit 



www.manaraa.com

68 

Table 4. Confidence interval estimates for GA and SQG best buffer 
configurations (buffer capacity allowed to vary from 1 to 32 
units, GA population size n = 100) 

Buffer Capacity 

Optim. Method 

SQG 

GA 

B1 

5 

2 

B2 B3 

5 17 

20 16 

B4 B5 

4 4 

17 11 

B6 

4 

30 

B7 

4 

23 

B8 B9 B10 

555 

869 

Estimation of throughput by C++ simulation model 

Optim. Method Buffer Configuration 

SQG 

GA 

Difference (GA - SQG) 

Configuration 1 settings: 

Total Number of Pallets in System = 40 pallets 

95% C.l. 

0.1275 ± 0.0012 

0.1267 ± 0.0017 

-0.0008 ± 0.0010 

Jam rates = (0, 3, 3, 0, 0, 0, 3, 0, 0, 0) per 100 assemblies for stations 
Geometric Mean Clear Time = 36 time units 
Cycle Time = 5 time units for all stations 
Transport Time = 1 time unit per buffer unit 



www.manaraa.com

69 

Table 5. Confidence interval estimates for GA and SQG best buffer 
configurations (buffer capacity allowed to vary from 1 to 16 
units, GA population size = 100) 

Buffer Capacity 

Optim. 
Method 

SQG 

GA 

B1 

5 

11 

B2 

5 

12 

B3 

17 

13 

B4 

4 

3 

B5 

4 

16 

B6 

4 

11 

B7 

4 

11 

B8 

5 

11 

B9 

5 

13 

Estimation of throughput by C++ simulation model 

Optim. Method Buffer Configuration 

SQG 

GA 

Difference (GA - SQG) 

Configuration 1 settings: 

Total Number of Pallets in System = 40 pallets 

95% C.!. 

0.1275 ± 0.0012 

0.1272 ± 0.0020 

-0.0003 ± 0.0011 

Bl0 

5 

12 

Jam rates = (0, 3, 3, 0, 0, 0, 3, 0, 0, 0) per 100 assemblies for stations 
Geometric Mean Clear Time = 36 time units 
Cycle Time = 5 time units for all stations 
Transport Time = 1 time unit per buffer unit 



www.manaraa.com

70 

Table 6. Confidence interval estimates for GA and SQG best buffer 
configurations for system configuration 2 

Buffer Capacity 

Optim. Bl B2 B3 B4 B5 B6 B7 B8 B9 
Method 

SQG 4 4 10 10 12 12 4 4 4 

GA 13 4 4 13 15 15 7 10 5 

Estimation of throughput by C++ simulation model 

Optim. Method Buffer Configuration 

SQG 

GA 

Difference (GA - SQG) 

Configuration 2 settings: 

Total Number of Pallets in System = 40 pallets 

95% C.l. 

0.1289 ± 0.0022 

0.1285 ± 0.0015 

-0.0004 ± 0.0012 

BIO 

4 

6 

Jam rates = (0, 3, 0, 3, 0, 3, 0, 0, 0, O) per 100 assemblies for stations 
Geometric Mean Clear Time = 36 time units 
Cycle Time = 5 time units for all stations 
Transport Time = 1 time unit per buffer unit 



www.manaraa.com

71 

Table 7. Confidence interval estimates for GA and SQG best buffer 
configurations for system configuration 3 

Buffer Capacity 

Optim. B1 B2 B3 B4 B5 B6 B7 B8 B9 
Method 

SQG 2 3 4 4 4 2 2 2 3 

GA 1 12 1 8 8 4 5 6 5 

Estimation of throughput by c++ simulation model 

Optim. Method Buffer Configuration 

SQG 

GA 

Difference (GA - SQG) 

Configuration 3 settings: 

Total Number of Pallets in System = 20 pallets 

95% C.I. 

0.1272 ± 0.0019 

0.1273 ± 0.0016 

0.0001 ± 0.0014 

B10 

3 

1 

Jam rates = (0, 3, 0, 0, 2, 0, 0, 2, 0, 0) per 100 assemblies for stations 
Geometric Mean Clear Time = 36 time units 
Cycle Time = 5 time units for all stations 
Transport Time = 1 time unit per buffer unit 



www.manaraa.com

72 

C. Summary 

It has been shown that the GA shows acceptable performance for the 

AAS buffer allocation problem, but· does not show great performance. This 

comes at the expense of considerable computation time. Liu and Sanders 

reported a time of 45 minutes was required to complete 10 iterations of the 

SQG algorithm. Typical execution times for the GA implementation were 

approximately 5 hours (on an '386 based PC running at 25 MHz). 

Therefore, unless a better implementation of a GA is discovered, the added 

computation effort is not merited. 



www.manaraa.com

73 

V. CONCLUSION 

The preceding chapters described and implemented a simple genetic 

algorithm and applied this algorithm to the buffer allocation problem of a 

closed-loop, asynchronous, automatic assembly system. The analysis also 

involved the investigation of GA parameter settings and how these 

parameters affect GA performance. 

At this point, a successful implementation of a genetic algorithm on 

the buffer allocation problem has not been realized. There are several 

reasons why this might be the case. Since the objective function is 

stochastic, we investigate maximizing a point estimate of an expectation 

function, rather than a deterministic function. The natural variation of 

this estimate leads to an objective function that is inherently "noisy." 

Therefore, replicating observation points (through using several simulation 

runs, instead one longer simulation run) might be advantageous. This also 

might lead to the use of a penalty function, where the variance of the 

point estimate could be incorporated into the objective function; thus, 

"penalizing" those observations that have a high variance. 

The computational requirements for a GA run were quite large. The 

simple fact that the GA might not have had enough time to properly mature 

could be another explanation for lack of performance. 

Though the genetic algorithm did not outperform the SQG method, the 

results were somewhat encouraging. The GA does generate a large variety 

of system configurations, which the design analyst mayor may not have 

considered. Since the algorithm uses blind inference, this can be beneficial 



www.manaraa.com

74 

in locating system designs that might have been overlooked. The GA also 

has the advantage of being totally automatic, thus a system designer does 

not need to use the algorithm interactively. 

Future research could be directed in several areas. More analysis is 

required to determine what constitutes good GA parameter settings. This is 

especially needed when a GA is applied to a stochastic objective. 

Also, more analysis is required to determine how much effort should 

be given to generating an objective function estimate. With the execution 

time being critical, it is important not to run the model an unnecessarily 

long period. Perhaps a method could be devised that would increase the 

simulation run length as the number of generations increased. The use of 

penalty functions could also be investigated. 

With the use of distributed processing computers (i.e., computers 

with parallel processor architectures), the long execution times might be 

reduced sufficiently to make the GA more appealing. Since the genetic 

algorithm searches many regions in parallel, the algorithm would be well 

suited for implementation on a parallel processor. 

In summary, the genetic algorithm gave encouraging performance on 

optimizing the buffer sizes for this particular system configuration. Since 

neither the SQG method or the GA arose as a qualified winner, both seem to 

be adequate approaches to the buffer allocation problem. 



www.manaraa.com

75 

REFERENCES 

Bastani, A. S. IIE Transactions 1990, 22(4), 351-360. 

Bethke, A. D. Ph.D. dissertation, University of Michigan, 1981; Dissertation 
Abstracts International, 41(9), 3503B. 

Boothroyd, G.; Poli, C.; Murch, L. E. Automatic Assembly; Marcel Dekker: New 
York, 1982. 

Bratley, P.; Fox, B. L.; Schrage, L. E. A Guide to Simulation: Second Edition; 
Springer-Verlag: New York, 1987. 

Buzacott, J. A. AIlE Transactions 1972, 4(4), 308-312. 

Buzacott, J. A.; Hanifin, L. E. AIlE Transactions 1978, 10(2), 197-207. 

Captor, N.; Biller, B. D.; Riggs, A. J.; Tomko, L. M.; Culver, M. C.; 
"Adaptable-programmable Assembly Research Technology Transfer to 
Industry"; final report to the National Science Foundation on Grant ISP 
78-18773, 1983. 

Choong, Y. F.; Gershwin, S. B. lIE Transactions 1987, 19(2), 150-159. 

Cleveland, G. A.; Smith, S. F. in Proceedings of the Third International 
Conference on Genetic Algorithms; Schaffer, J. D., Ed.; Mogan Kaufmann: San 
Mateo, California, 1989; pp. 160-169. 

Commault, C.; Semery, A. lIE Transactions 1990, 22(2), 133-142. 

Dallery Y.; David, R.; Xie, X. L. lIE Transactions 1988, 20(3), 280-283. 

Davis, L. in Proceedings of an International Conference on Genetic 
Algorithms and Their Application; Grefenstette, J. J., Ed.; Carnegie-Mellon 
University: Pittsburgh, 1985; pp. 136-140. 

Davis, L. Genetic Algorithms and Simulated Annealing; Morgan Kaufmann: 
London, 1987. 

DeJong, K. A. Ph.D. Dissertation, University of Michigan, 1975; Dissertation 
Abstracts International, 36(10), 5140B. 

Ermoliev, Y. Stochastics 1983, 9, 1-36. 

Ermoliev, Y.; Gaivoronski, A. "Stochastic quasigradient methods and their 
implementation"; Working Paper WP-84-55, IIASA, Laxenburg, Austria, 1984. 



www.manaraa.com

76 

Fogarty, T. C. in Proceedings of the Third International Conference on 
Genetic Algorithms; Schaffer, J. D., Ed.; Mogan Kaufmann: San Mateo, 
California, 1989; pp. 104-109. 

Freeman, M. C. The Journal of Industrial Engineering 1964, 15(4), 194-200. 

Gemmill, D. D. Ph.D. Dissertation, University of Wisconsin-Madison, 1988. 

Goldberg, D. E.; Lingle Jr., R. in Proceedings of an International Conference 
on Genetic Algorithms and Their Applications; Grefenstette, J. J., Ed.; 
Carnegie-Mellon University: Pittsburgh, 1985; pp. 154-159. 

Goldberg, D. E. in Proceedings of an International Conference on Genetic 
Algorithms and Their Application; Grefenstette, J. J., Ed.; Carnegie-Mellon 
University: Pittsburgh, 1985a; pp. 8-15. 

Goldberg, D. E. The Clearinghouse for Genetic Algorithms Report No. 85001, 
1985b; University of Alabama: Tuscaloosa. 

Goldberg, D. E. in Proceedings of the Ninth Conference on Electronic 
Computation; Will, K. M., Ed.; American Society of Civil Engineers: New York, 
1986; pp. 471-482. 

Goldberg, D. E.; Richardson, J. in Proceedings of the Second International 
Conference on Genetic Algorithms; Grefenstette, J. J., Ed.; Lawrence Erlbaum 
Associates: Hillsdale, New Jersey, 1987; pp. 41-49. 

Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine 
Learning; Addison-Wesley: New York, 1989. 

Goldberg, D. D. The Clearinghouse for Genetic Algorithms Report No. 90003, 
1990; University of Alabama: Tuscaloosa. 

Gordon, W. J.; Newell, G. F. Operations Research 1967, 15(2), 254-265. 

Grefenstette, J. J.; Gopal, R.; Rosmaita, B.; Van Gucht, D. in Proceedings of 
an International Conference on Genetic Algorithms and Their Applications; 
Grefenstette, J. J., Ed.; Carnegie-Mellon University: Pittsburgh, 1985, pp. 
160-168. 

Grefenstette, J. J.; Baker, J. E. in Proceedings of the Third International 
Conference on Genetic Algorithms; Schaffer, J. D., Ed.; Mogan Kaufmann: San 
Mateo, California, 1989; pp. 20-27. 

Hajek, B. Mathematics of Operations Research 1988, 13, 311-329. 

Hatcher, J. M. AIlE Transactions 1969, 1(2), 150-156. 



www.manaraa.com

77 

Hillier, F. S.; Boling, R. W. The Journal of Industrial Engineering 1966, 
17(12), 651-658. 

Holland, J. H. Adaptation in Natural and Artificial Systems; Ann Arbor: The 
University of Michigan, 1975. 

Jackson, J. R. Management Science 1963, 10(1), 131-142. 

Jafari, M. A.; Shanthikumar, J. G. lIE Transactions 1989, 21(2), 130-135. 

Jones, D. W. Communications of the ACM 1986, 29(4), 300-311. 

Kamath, M.; Sanders, J. L. Large Scale Systems 1987, 12, 143-154. 

Kirkpatrick, S.; Gelatt Jr., C. D.; Vecchi, M. P. Science 1983, 220, 671-680. 

Liu, C. M. Ph.D. Dissertation, University of Wiconsin-Madison, 1987. 

Liu, C. M.; Sanders, J. L Annals of Operations Research 1988, 15, 131-154. 

Maza, M. in Proceedings of the Third International Conference on Genetic 
Algorithms; Schaffer, J. D., Ed.; Mogan Kaufmann: San Mateo,. California, 
1989; pp. 208-212. 

Metropolis, N.; Rosenbluth, A.; Rosenbluth, M. Journal of Chemical Physics 
1953, 21, 1087-1091. 

Mitra, D.; Romeo, F.; Sangiovanni-Vincentelli Advanced Applied Probability 
1986, 18, 747-771. 

Okamura, K.; Yamashina, H. International Journal of Production Research 
1983, 21(2), 183-195. 

Rao, N. P. International Journal of Production Research 1975, 13(2), 207-217. 

Richardson, J. T.; Palmer, M. R.; Liepins, G.; Hilliard, M. in Proceedings of 
the Third International Conference on Genetic Algorithms; Schaffer, J. D., 
Ed.; Mogan Kaufmann: San Mateo, California, 1989; pp. 191-197. 

Romeo, F.; Sangiovanni-Vincentelli, A. in 1985 Chapel Hill Conference on 
VLSI; Fuchs, H., Ed.; Computer Science: Rockville, Maryland, 1985; pp. 393-
417. 

Sechen, C. VLSI Placement and Global Routing Using Simulated Annealing; 
Kluwer Academic: Boston; 1988. 

Sheskin, T. J AIlE Transactions 1975, 8(1), 146-152. 



www.manaraa.com

78 

Suri, R.; Diehl,G. W. Management Science 1986, 32(2), 206-224. 

Syswerda, G. in Proceedings of the Third International Conference on 
Genetic Algorithms; Schaffer, J. D., Ed.; Mogan Kaufmann: San Mateo, 
California, 1989; pp. 2-9. 

Whitley, D.; Starkweather, T.; Fuqay D. in Proceedings of the Third 
International Conference on Genetic Algorithms; Schaffer, J. D., Ed.; Morgan 
Kaufmann: San Mateo, California, 1989; pp. 133-140. 

Wichmann; B. A.; Hill, I. D. Applied Statistics 1982, 31(2), 188-190. 

Wong, D. F.; Leong, H. W.; Liu, C. L. Simulated Annealing for VLSI Design; 
Kluwer Academic: Boston, 1988. 

Yeralan, S.; Muth, E. J. lIE Transactions 1987, 19(2), 130-139. 


	1991
	A genetic algorithm approach to optimization of asynchronous automatic assembly systems
	Mark A. Wellman
	Recommended Citation


	A genetic algorithm approach to optimization of asynchronous automatic assembly systems 

