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I. INTRODUCTION 

Assembly processes are among the most important in a manufacturing 

facility. The costs associated with assembly operations can often account 

for more than 50% of the finished product [Boothroyd et al., 1982]. It has 

been estimated [Captor et al., 1983] that batch manufacturing accounts for 

appro~imately 75% of all manufacturing in the United States and that this 

process accounts for nearly 22% of the U.S. Gross National Product. 

Clearly, the assembly process plays an important role in manufacturing and 

the entire national economy. 

A. Assembly Systems 

From a managerial standpoint, assembly systems can have a large 

impact upon profitability and competitiveness. As industry is reducing 

production times in order to reduce lead-times of product deliveries, 

optimization of assembly processes is a primary concern. The most common 

objectives are to minimize the additional cost per part (attributed to 

assembly operations) or to maximize the efficiency of the system. With a 

real system the costs of floor space, labor, additional stations, and 

transport pallets can be estimated and a system configured on the basis of 

economic payback. Since we are studying a representative hypothetical 

system, the objective will be to maximize the efficiency, or throughput, of 

the system. Throughput is defined by marking a station which 

corresponds to the unload operation of the system and observing the rate 

of output. 
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At present we can surmise that an automatic assembly system (AAS) 

is merely a queuing system. An AAS, like any basic queuing system, 

consists of three basic elements: customers (parts), servers (workstations), 

and randomness. The randomness can be seen by way of variable service 

times, unreliable service stations, or variable arrival rates to the system. 

An automatic assembly system can be manual or automatic, and can be 

synchronous or asynchronous. A manual system is one in which the 

service is completed by human operators. An automatic system, in contrast, 

service is completed by robots or automatic workheads. Synchronous 

systems are those in which the production rate is fixed by the transport 

mechanism. All parts move from station to station at the same time, thus 

all stations have the identical service time. Asynchronous systems allow 

the parts to move to the next station upon completion of the service. This 

allows the system some autonomy since when there is a work stoppage at 

one station, the remaining stations can continue processing. When a work 

stoppage occurs in a synchronous system, however, the entire system waits 

until the stoppage is corrected. 

We can also classify assembly systems according to their topology. 

An open system (Figure 1) involves parts arriving at one end of the 

system, progressing through a series of workstations, and departing the 

system from the other end. A closed system (Figure 2) requires parts to 

be unloaded and loaded at the same position with the stations configured 

around a loop. The open system has the distinction of a variable number 

of parts in the system at anyone time. The closed system, on the other 

hand, has a fixed number of parts in the system at all times. 
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One of the primary decision variables in an asynchronous AAS is the 

optimal allocation of buffer space between stations. Allocating buffer space 

has the advantage of allowing stations to work more autonomously. The 

disadvantage is that buffer space introduces transport delays between 

stations. The application of large buffer spaces also will have large costs 

associated with the design. This can be attibuted to the incremental costs 

of adding additional conveyor, the cost of floorspace, and the cost of 

carrying extra work-in-process inventory. The cost of floorspace is not 

trivial, with a couple estimates being $1600 per square foot for General 

Motors [Liu, 1987] to $5000 per square foot for clean room facilities in 

computer chip manufacturing (data obtained for clean room estimates from 

discussions with an industrial engineer from a chip manufacturing facility). 

Another major decision variable in the closed asynchronous AAS case, 

is the optimal number of fixture pallets to allocate to the system. From a 

system efficiency standpoint, allocating too many pallets introduces 

"blocking" of an upstream station when a station experiences a breakdown. 

Too few pallets will account for the "starvation" of downstream stations due 

to longer transportation delays. Also, from an economic standpoint, each 

fixture pallet can cost from $1000 to $5000 [Liu and Sanders, 1988]. 

B. Optimization Approaches 

There have been several methodologies investigated to try and gain 

some insight on the problem of optimizing the allocation of pallets and 

buffer space. Their differences involve the manner in which the system is 

modeled, the number and variety of simplifying assumptions used in 
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modeling the system, and the algorithm used to optimize the AAS design. 

The primary algorithms investigated will include: stochastic quasigradient 

(SQG) methods, simulated annealing, and genetic algorithms. 

The objective function (throughput, or total profit) is a stochastic 

function of the input variables. The optimization process of a stochastic 

function therefore leads to a Monte Carlo method of global optimization. 

The merits of each aforementioned algorithm as applied to the buffer 

allocation problem will be investigated. The genetic algorithm will be the 

primary method investigated. No literature has been found on a genetic 

algorithm's effectiveness on this problem. 

John Holland [Holland, 1975] founded the field of genetic algorithms 

(GAs). His book, Adaptation in Natural and Artificial Systems, discussed the 

ideas of representing complicated structures by a simple representation of 

bit strings, and the power of simple transformations to improve these bit 

strings. These transformations, based on the mechanics of natural selection 

and "survival of the fittest", are reproduction, crossover, and mutation. 

The idea being that a model of the natural evolution process might be 

applicable to standard optimization problems. 

Nature has been very good in optimizing the ecosystems since those 

individuals with "good" traits tend to populate where those with "bad" 

traits tend to die out. The genetic algorithm process, as applied to AAS 

design, might be interpreted as the operation on those designs with 

favorable objective results, leading to the generation of other favorable 

designs. Also, the operation on those designs with unfavorable objective 
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results will lead to those designs dying out. 

c. Research Objectives 

The primary effort of this research will be to investigate the 

applicability of a genetic algorithm to a closed asynchronous automatic 

assembly system. A hypothetical closed AAS model containing 10 stations 

configured in a single loop with unreliable stations is used as a testbed. 

Objective function estimates are furnished through a computer simulation 

model. From the analysis, we will describe how a genetic algorithm 

performed on the testbed and its applicability to similar systems. 
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II. REVIEW OF LITERATURE 

This literature review assembles a collection of two areas of the 

automatic assembly process analysis. The first being the different 

approaches of modeling an AAS, including the different underlying 

assumptions of each modeling method. The second area includes a review 

of· several stochastic optimization algorithms. This second area will 

summarize the algorithm method and investigate the advantages and 

disadvantages of each algorithm as applied to the AAS optimization problem. 

A. AAS Modeling Methods 

Queuing networks can be used to solve several practical problems. 

Two major classifications can be seen with respect to AASs. Open networks 

[Jackson, 1963] allow jobs to enter and leave the network. Closed networks 

[Gordon and Newell, 1967} have a constant set of jobs staying in the 

network. In a closed network, the practical interpretation is departing 

jobs are replaced with a statistically identical job so one can analyze the 

system as if no jobs enter or depart. 

The AAS differs from the basic queuing system in that it includes a 

transport mechanism that moves parts from station to station. The 

transportation mechanism, reliability of the stations, topology of the system 

(open, closed, or multiple loop), and other complicating factors make the 

analytic modeling of a real assembly system difficult. Two major analytic 

methods include Markov chain analysis and queuing network models. The 

difficulties of each approach, as applied to an AAS, are summarized below. 
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Markov chain models require a large number of states to model a 

system of more than two or three stations. Each station in an AAS can be 

in one of two states: (1) a "down" state represents a station that cannot 

process parts due to a jam or machine breakdown, or the station is "forced 

down" when its buffer is empty (station is said to be "starved") or when 

the buffer space of the next downstream station is full (station is said to 

be "blocked"), (2) an "up" state represents a station that is processing 

parts normally. Also, each buffer having a storage capacity of N 

assemblies has N+l states (corresponding to 0 to N assemblies in the 

buffer). For example, a 10 stage system with 10 buffers each having a 

capacity of 5 assemblies will have 210 x 610 (::::62 billion) states. 

The queuing network models have a difficulty in incorporating the 

transportation delays or the blocking and starvation aspects of an AAS. 

Recently, however, some effort in trying to model the transportation delay 

and its effect on performance evaluation of transfer lines can be seen 

[Commault and Semery, 1990]. With regards to the blocking/starvation 

issue, most queuing models involve the assumption of infinite buffer space; 

therefore, the blocking effect is dismissed. In actuality, buffers are 

usually small and the blocking effect is not negligible. 

To better understand the AAS model, it is necessary to define the 

appropriate variables which will be under investigation. These variables 

will also divide the literature into logical areas where the analysis will 

concentrate on the impact of several input variables on AAS performance. 

Also, the models will vary according to the simplifying assumptions of the 

model. The following represents the typical assumptions and model 
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Station service time 
Deterministic 
Stochastic 

Transfer mechanism 
Synchronous 
Asynchronous 

Inter-Stage buffers 
None 
Finite 
Infinite 

Transport delay time 
None 
Non-zero 

Topology of the system 
Serial (open) 
Single loop (closed) 
Multiple loop (closed) 

9 

Inter-arrival time at first station 
(this is for open systems, since the arrival rate for a closed system 
is equal to the output of the last station) 

Zero 
Deterministic 
Stochastic 

Station jams or breakdowns 
None 
Stochastic 

Stations clear or repair times 
Deterministic 
Stochastic 

Scrapping of the assemblies after a jam/breakdown 
None 
Random fraction 
All 

The remainder of this section will review the literature corresponding 

to AAS modeling approaches. The AAS modeling literature is divided by 
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those authors who investigate open systems versus those who investigate 

closed systems. The section will conclude with some discussion of 

literature corresponding to simulation models of assembly line systems. For 

additional material on analytical models, an excellent review of seven 

analytical models is presented by Buzacott and Hanifin [Buzacott and 

Hanifin, 1978]. 

1. Analytical models 

Analytical models, or stC?chastic process models, is one approach to 

modeling assembly systems. The following review summarizes the literature 

available for modeling open systems and then follows with a review of 

closed systems models. 

a. Literature review of open' systems Open systems are those 

that have parts entering at one end of the system and departing at the 

other end. This type of system has received the most attention as it is 

relatively easier to model than the closed system configuration. This 

discussion of open systems is further divided into three areas, including: 

System models with reliable stations with random processing 

times 

System models with unreliable stations with deterministic 

processing times 

System models with both unreliable stations and random 

processing times 

1) Models containing random processing times These models 

concentrate on determining what effect random processing times have on 

the system performance. Most models assume the processing times are 
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random variables with an exponential, Erlang, or normal distribution. The 

common objective is to determine what influence internal buffer storage, 

number of slations, and station sequence has on system performance. The 

investigations are typically restricted to the two- or three-station case. 

Hillier and Boling [Hillier and Boling, 1966] discussed what effect the 

number of work stations, amount of buffer storage, and unbalancing of the 

station cycle times has on the pr?duction rate. They considered systems 

containi!lg two-, three-, and four-station production systems. Their 

approach was not to develop a model yielding exact numerical results that 

were from a real system. Rather, they were interested in tractability 

where the objective was to gain insight in relative magnitudes of design 

changes on production performance. They used basic queuing theory 

equations to determine the effects of each factor. Their primary 

contributions were to support evidence that, in some cases, unbalancing a 

production line can in fact increase its efficiency. They found that 

production was maximized by assigning a somewhat lower mean operation 

time to the intermediate stations. They characterized this as the "bowl 

phenomenon. " 

Hatcher [Hatcher, 1969] investigated the impact of adding internal 

buffer storage capacity for two- and three-stage production lines. He also 

looked at the decrease in production rate caused by adding stages to the 

line. The service times for each station was assumed to be a statistically 

independent exponential random variable. Hatcher concluded that near 

optimum production rates could be attained with relatively small buffer 

allocations. He determined that after considering a wide variety of service 
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rates, that ten or less items per buffer would be sufficient. Hatcher also 

concluded that adding additional stations would reduce the output rate of 

the production line; however, the incremental effect would diminish as the 

number of stages increased. 

Rao [Rao, 1975] described analytical solutions for determining the 

production rate of a two-stage serial production system with variable 

operation time at the stages. He reported that the methodology could be 

applicable to any type of service time distribution, where he worked out 

specific examples using the Erlang and normal distributions. The analysis 

lead to the conclusion that at high values of coefficient of variation, type 

of service time distribution had a considerable effect upon the system 

throughput. 

2) Models containing unreliable stations This research 

effort concentrates on the effects of station failures and subsequent 

repairs on the efficiency of the system. The station processing times are 

considered to be deterministic and constant. The system randomness arises 

through random times between station jams/breakdowns and the random 

time required to clear/repair the station. Most studies assume that each 

station failure is independent of other station failures. The breakdowns 

and repairs are generally modeled assuming geometrically distributed 

random times. This can be attributed that most models discretize time. 

Thus, time moves in discrete increments where th~ system moves from one 

"state" to another "state." The geometric distribution is the discrete 

analog of the exponential; thus, an exponential distribution is often used in 

simulation models. 
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Sheskin [Sheskin, 1975] analyzed the allocation of storage capacity to 

buffers between consecutive machines in a serial, synchronized, automatic 

transfer production line. Exact numerical results were presented for lines 

up to 4 machines with a total buffer capacity of twelve units. A 

decomposition methodology was outlined which would give approximate 

results for lines containing more than four stations. 

Yeralan and Muth [Yeralan and Muth, 1987] presented a general 

model for production lines containing two unreliable stations, a finite 

capacity inter-station buffer, constant cycle time, and synchronous 

transfer. They used Markov chain analysis and presented a general 

recursive procedure to solve for the steady-state probabilities. They also 

investigated cases when the steady-state probability vector leads to the 

ability to express the production rate as a closed-form function of the 

buffer capacity. 

Jafari and Shanthikumar [Jafari and Shanthikumar, 1989] present a 

heuristic solution of the optimal distribution of intermediate storage 

buffers, given a total storage capacity, in a synchronized transfer line with 

an arbitrary number of stages. They formulate the system as a dynamic 

programming problem to compute the production rate of the transfer line. 

They showed that the dynamic programming results gave reasonable 

estimates of the production rate when compared to an exact production rate 

for the three-station case. 

Recently, Commault and Semery [Commault and Semery, 1990] 

presented an approach to incorporate the transportation delay in buffers 

into an analytical performance evaluation of transfer lines. They showed 
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that the delays in buffers could be approximately represented as an 

"equivalent line" with the same machine characteristics but reduced buffer 

capacities. The reduction of a two-station intermediate buffer capacity by 

a number of Ac spaces, where A C is defined as the transit time in the 

buffer divided by the maximum of the adjacent machines' processing time. 

This method was reported to give a pessimistic production rate evaluation. 

The error was determined to be less than one percent for the two-station 

case, and simulation results supported the application to systems containing 

more than two-stations. 

3) Models containing unreliable stations and random process 

These models allow the random variables to include the 

processing times at the stations, the jam/breakdown rates, and the time to 

clear/repair the station. These models add significant complexity to the 

analyticsj therefore, there is a limited number of studies. 

Buzacott [Buzacott, 1972] presents an exact Markov model of a two

station system with unreliable stations and random station processing times. 

He showed a simple method of combining the results from a previous work. 

This previous work contained a model using random processing times and 

breakdowns in a fixed-cycle time system. He showed this gave very good 

approximations to the results of the exact model. He also outlines how this 

methorl could be extended to systems with more than two stations. He 

pointed out that buffer storage capacity of larger than 4 or 5 units result 

in a low marginal improvement when dealing with only random processing 

times. He continued to point out that in the unreliable station and 

constant process time case, a buffer storage capacity should be at least 
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equal to the mean repair time in cycles. For example, if the mean repair 

time is equal to 10 cycles, a buffer storage capacity of 20 or 30 would be 

appropriate. He suggested the system designer consider the two random 

effects separately and decide whether to use the buffer storage capacity to 

reduce the effect of random processing times or reduce the effect of 

breakdowns. In the former case, a relatively small buffer capacity is 

required while the latter case a much larger capacity is required. 

Choong and Gershwin [Choong and Gershwin, 1987] presented a 

decomposition method to evaluate the performance measures of a capacitated 

transfer line with unreliable machines and random process times. The 

decomposition was based on approximating the k-l-buffer system by k-l 

single-buffer systems. The numerical examples indicated that the approach 

was accurate as long as the probability that a machine is starved and 

blocked at the same time is small. They stated the accuracy of the 

algorithm didn't seem to be sensitive to the number of stations in the line. 

However, it did appear to be unstable and not always converge. Dallery, 

David, and Xie [Dallery et al., 1988] extended this analysis and proposed 

an algorithm with a lower computational complexity. Further, in all cases 

they tested, the algorithm always converged. 

b. Literature review of closed systems The bulk of the literature 

considers open system configurations. However, closed systems have 

received some attention in recent years. The ability to analytically model a 

closed system usually involves making much more restrictive assumptions. 

Most studies assume unlimited buffer space, no transportation delays, and a 
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small number of stations. To present, computer simulation is the most 

widely used modeling approach to the closed system. 

Suri and Diehl [Suri and Diehl, 1986] presented a model which 

enables efficient analysis of certain types of closed queuing networks with 

blocking due to limited buffer spaces. The networks they analyzed were 

those in which the limited buffers occur in tandem subnetworks. They 

assumed the buffer capacity of the loop-back buffer was infinite (i.e., in a 

M-station system, the buffer between the MID and Ml stations was infinite). 

The model was solved iteratively for each subnetwork and then for the 

entire network. Their study assumes exponential service times for all 

stations. 

Kamath and Sanders [Kamath and Sanders, 1987J considered two 

analytical techniques, namely the Renewal Approximations (RA) method and 

the Product-Form Analysis (PFA) method. For the cases they examined, RA 

method was substantially superior to that of the PFA method. The 

performance models did not include the blocking due to finite buffers or 

the transportation delay times. 

Bastani [Bastani, 1990] considered a closed-loop conveyor system with 

a single loading station and multiple unloading stations. He investigates a 

two-station system that allows breakdowns and random exponentially 

distributed interarrival times at the loading station. The service times of 

the unloading stations, the time between failures, and the repair times of 

unloading stations arc all i.i.d. random variables having and exponential 

distribution. A matrix-geometric solution is obtained which provides an 

approximation of the steady-state probabilities. This configuration doesn't 
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quite fit our definition of a closed system, but its approach was felt to 

merit inclusion. 

2. Simulation models 

Simulation is a good tool whenever the system is very difficult to 

model, or when very accurate results are required. Simulation models allow 

many random variable probability distributions, a variety of system 

configurations, and a variety of statistical collection procedures to generate 

estimates of performance. Also, there is a host of discrete-event simulation 

languages (SIMAN, GPSS, SLAM, SIMSCRIPT, to name a few) that will 

decrease the amount of programming effort by the system designer. These 

simulation languages generally have statistics collection routines, random 

number generators, event clock mechanisms, and report generators. Also, 

simulation models can be implemented relatively easily in any procedural 

language (such as FORTRAN, BASIC, C, PASCAL, etc.). The main restriction 

to a simulation model approach is time and cost requirement of coding and 

running the model. For an excellent review of simulation languages and a 

discussion on procedural programming simulation techniques, the reader is 

directed to the text, A Guide to Simulation [Bratley et al., 1987]. 

Simulation models in the literature tend to describe systems with 

very specific configurations and applications. However, some authors have 

used simulations to develop some insight on the impact of design 

constraints on performance in a general system. Many studies use 

simulation as a check for the validity of the approximations set forth by an 

analytical model. The remainder of this section, however, will discuss the 
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findings of those studies which gave way to generalizations of AAS system 

design. 

Freeman [Freeman, 1964] considered the operational and economic 

aspects of the number and sequence of production stages and the amount 

and allocation of storage capacity among the stages. He found that correct 

allocation of total buffer capacity is an important consideration. He 

presented several generalizations based on simulation results from a three

station production line. The generalizations are presented as follows: 

Avoid extreme allocations, that is no buffer capacity between 

some pairs of stages and all between other pairs. 

The worse a bad stage is, relative to the good stages, the more 

the buffer capacity that should be allocated to it. 

More buffer capacity should be allocated between two bad 

stages than between a bad and a good stage. 

The optimum relative allocation is substantially invariant to 

changes in the total buffer capacity 

The end of a line is more critical than the front. If a bad 

stage occurs toward the end of a line it should be allocated an 

even larger share of the total buffer capacity. 

Okamura and Yamashina [Okamura and Yamashina, 1983] investigated 

the role of buffer stock in a multi-stage transfer line system. They used 

simulation results to show that an n-stage line should be designed such 

that the lowest stage production rate occurs in the nth stage, the second 

lowest in the first stage, the third lowest in the (n-l)st stage, the fourth 
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lowest in the second stage and so on, to maximize line production rate. 

They also reported the following generalizations: 

Uniform buffer storage capacity allocation does not guarantee 

the optimum allocation even for balanced identical lines. 

For a multi-stage line, the number of stages and buffer storage 

capacity between the stages are critical design factors strongly 

influencing the production rate of the system. 

The total buffer capacity should be allocated to the buffers in 

such a way that the difference between the two production 

rates of the stages on either side of a storage point is 

minimized. 

3. Summary of literature 

Based on the review, analytical models can be used effectively to 

model systems containing two or three stations. The difficulty of 

analytically modeling the occurrence of transportation delays, blocking 

effects, and closed system configurations make simulation modeling the 

method of choice if these phenomena are crucial to the system definition. 

Also, simulation is the chosen modeling method when the systems are very 

complex and contain significant interactions between stations. 

B. Stochastic Optimization Algorithms 

Stochastic optimization of an objective function estimated by computer 

simulation is also called Monte Carlo optimization. The optimization methods 

use the simulation to obtain an estimate of the objective function value, 

then applies some search algorithm to find the optimal solution. Classical 
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Monte Carlo methods include: Robbins-Monro methods, Kiefer-Wolfowitz 

methods, and response surface methods. These methods are mentioned as 

possible approaches, but were not investigated in order to concentrate on 

the modern optimization methods of stochastic quasigradient (SQG) methods, 

simulated annealing, and genetic algorithms (GAs). 

1. Stochastic guasigradient methods 

Stochastic quasigradient methods are stochastic algorithmic 

procedures for solving general constrained optimization problems with 

nondifferentiable, nonconvex functions. SQG methods allow us to solve 

optimization problems where the objective function and constraints are very 

complex and it is impossible to generate exact values of these functions (or 

the derivatives). In the case of AAS design, the objective functions are 

discrete (buffer space) or continuous (station service times) stochastic 

functions. The approach is to use statistical estimates for the objective 

and derivatives, then apply a standard constrained procedure for a step 

direction to drive the value of the input variables to the optimum solution. 

Some of the available literature on applications of SQG methods are 

summarized below. 

Liu [Liu, 1987] presented a list of advantages and difficulties of 

using a SQG method. The advantages listed were as follows: 

Flexibility in the choice "f gradient estimation methods during 

iterations. 

Selection between automatic or interactive modes. In automatic 

mode, the algorithm can modify the step size and stopping 

criteria. In manual mode, the user can change gradient 
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estimation methods, step size, and number of observations for 

function value estimation. 

The difficulties in using a SQG method are: 

Sensitive to the choice of starting point. 

Problem with choice of a good starting step size and the choice 

of the method to modify it during iterations. 

Selection of various methods for quasigradient estimates. 

Determination of good stopping criteria 

Convergence to the optimal region if the starting point is far 

away from the optimal region. 

Ermoliev [Ermoliev, 1983] gives a survey of the development of SQG 

methods. He gives a general overview of the method, then proceeds to 

illustrate the use of SQG methods on many different problem types. He 

formulated problems into four groups: general stochastic programming 

problems, recourse problems, stochastic minimax problems and nonlinear 

programming problems. He concludes with a computer implementation of an 

example stochastic facility location problem. 

Liu and Sanders [Liu and Sanders, 1988] presented the application of 

the SQG method of Ermoliev and Gaivoronski [Ermoliev, 1983; Ermoliev and 

Gaivoronski, Hl84] to the performance optimization of asynchronous flexible 

assembly systems (AFAS). They used a simulation to obtain objective 

function estimates of a closed-loop system with stations subject to random 

jams/breakdowns with geometrically distributed repair times. The station 

blocking effect due to finite buffers and the starvation effect due to 
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transportation delays were included in the simulation model. They used a 

hybrid algorithm which used a queuing network model to set the total 

number of pallets in the system and then used an SQG algorithm to allocate 

the buffer spacing to obtain optimal system throughput. Different forms of 

the SQG algorithm were examined to determine the specification of buffer 

sizes in a ten-station AF AS. 

2. Simulated annealing 

Simulated annealing is a computational technique derived from 

statistical mechanics for finding near-global minimum-cost solutions to large 

optimization problems. Here the objective function is assumed deterministic. 

The approach is analogous to first melting a substance, then by careful 

annealing, reduce the temperature slowly to obtain the desired crystalline 

structures. Higher energy states (those states with higher cost function 

results) can be reached, but the likelihood of acceptance decreases as the 

temperature is decreased. The general method is to randomly generate a 

state, say j, from the current state, i. The new state, j, is accepted if the 

cost is less than that at i. Otherwise, the new state, j, is accepted if a 

random number, r, generated uniformly over the interval [0,1] is less than 

a real number, y, defined: 

where: c(J1 = cost of new configuration 

c(i) = cost of present configuration 

Till = temperature at time m ( m = 0, 1, 2, ••• ) 
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The process is started using a large value for Till and then reducing the 

value as the number of iterations increase. Therefore, a higher cost move 

is accepted with higher probability in early stages than in later stages 

when T. is reduced. This allows the algorithm to escape local minima 

convergence. Again, the assumption is that the cost function is a 

deterministic function. To be applied to the AAS buffer allocation problem, 

certain modifications would have to be made in order to compensate for the 

stochastic nature of the problem. 

Simulated annealing has seen a number of applications in large 

combinatorial optimization problems. Specifically, the algorithm has been 

used extensively in the area of VLSI design [Kirkpatrick et al., 1983; Romeo 

and Sangiovanni-Vincentelli, 1985; Sechen, 1988; Wong et al., 1988]. It also 

has been applied to a stochastic portfolio problem [Gemmill, 1988]. The 

portfolio problem deals with the problems involved with optimizing the 

inventory levels of variable sized stock sheets given a random bill of 

material. Some advantages can be seen to using the simulated annealing 

algorithm: 

Under certain assumptions of the rules used by the algorithm 

and on the time spent at each temperature, the algorithm 

generates a global optimum solution with probability one. 

Allows "hill climbing moves" which allow the algorithm to escape 

local optimization. 

Some difficulties can be also seen: 

Determination of a good "cooling schedule" for a slow reduction 
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in the temperature value. 

Determination of a good stopping criteria. 

Lack of convergence proof for a stochastic cost function. 

Allocation of computer resources. The algorithm typically 

requires a very large number of iterations. 

Several studies have been conducted to try and resolve some of these 

difficulties. 

Metropolis et ale [Metropolis et al., 1953] proposed an algorithm for 

the efficient simulation of the evolution of a solid to thermal equilibrium. 

It wasn't until some thirty years later that Kirkpatrick, Gelatt, and Vecchi 

[Kirkpatrick et al., 1983] realized the similarity of this cooling process to 

the minimization of the cost function of a combinatorial optimization 

problem. They demonstrated the use of simulated annealing on a wire 

routing and component placement problem in VLSI design. They also 

demonstrated the application of simulated annealing to a 400 city traveling 

salesman problem. 

Mitra, Romeo, and Sangivanni-Vincetelli [Mitra et al., 1986] presented 

a theoretical analysis of simulated annealing based on its precise model, a 

time-inhomogeneous Markov chain. An annealing schedule was given for 

which the Markov chain was strongly ergodic and the algorithm converged 

to a global optimum. The finite-time behavior of the algorithm was also 

analyzed and a bound obtained on the departure of the probability 

distribution of the state at finite time from the optimum. This bound gave 

an estimate of the rate of convergence and gave some insight into the 

conditions on the annealing schedule which gave optimum performance. 
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Hajek [Hajek, 1988] gave a simple necessary and sufficient condition 

on the cooling schedule for the algorithm state to converge in probability 

to the set of globally minimum cost states. He showed that in the special 

case that the cooling schedule had a parametric form T(t) = c/log(l+t) the 

condition for convergence was that c be greater than or equal to the depth 

of the deepest local optimum which was not the global minimum state. 

3. Genetic algorithms 

As was mentioned in the introduction, genetic algorithms demonstrate 

a method of representing complicated structures by a simple representation 

of bit strings, and the power of simple transformations to improve these bit 

strings. These transformations, based on the mechanics of natural selection 

and "survival of the fittest", are reproduction, crossover, and mutation. 

The algorithm is used to maximize a nonnegative deterministic objective 

funciton. The remainder of this section will review the literature available 

and discuss a general procedure for implementing a simple genetic 

algorithm (SGA). 

a. General description of the algorithm The approach is to first 

discretize and encode the decision variables into a 'finite binary (or some 

other appropriate alphabet) string. The binary positions have the parallel 

of being the "genes" and the concatenation of the "genes" form an 

"individual". Next, a series of strings are randomly generated and the 

objective function results are computed. This collection of "individuals" 

has the parallel of being the "population." Individuals are selected in the 

reproduction step of the algorithm according to their "fitness", that is, 

those individuals having greater objective function results will have a 
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higher probability of being selected for the next generation of the 

population than those individuals with lower fitness values. Two 

individuals are selected during reproduction and then are "cross-bred." 

This is the crossover step of the algorithm. This amounts to randomly 

choosing a point along the finite string, then swapping all positions ahead 

of this point between the two individuals. For example, if two individuals, 

A and B (with string positions defined using a binary alphabet) were 

crossed at the tenth position; individuals A' and B' would arise after 

crossover (see Figure 3). The final step of the genetic algorithm is 

mutation. Mutation is the occasional random alteration of a string position 

from a 1 to a 0 and vice versa. The function of mutation is a secondary 

role; where reproduction and crossover are search mechanisms, mutation 

guards against losing potential useful genetic information at a bit position. 

A = 1001 0100 °TIu 0111 
B = 1100 0101 11 00 1001 

A'= 1100 0101 11 11 0111 
B'= 1001 0100 01 00 1001 

Figure 3. Example of simple crossover 

Here we have formulated a representation of a simple genetic 

algorithm (SGA). The intent of presenting a general description is to 

acquaint the reader with some of the terminology and to get a general feel 

for the process of the genetic algorithm transformations. Perhaps Goldberg 

[Goldberg, 1986] explained the ability of a genetic algorithm to process 

information best: 
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Consider a population of n strings over some appropriate 

alphabet coded so that each is a complete IDEA or prescription 

for performing a particular task. Substrings within each 

string (IDEA) contain various NOTIONS of what's important or 

relevant to the task. Viewed in this way, the population 

contains not just a sample of n IDEAS, rather it contains a 

multitude of NOTIONS. Genetic algorithms carefully exploit this 

wealth of information about important NOTIONS by 1) 

reproducing quality NOTIONS according to their performance 

and 2) crossing those NOTIONS with many other high

performance NOTIONS from other strings. 

b. Applications of a genetic algorithm Genetic algorithms have 

seen a wide and diverse area of applications. Genetic algorithms have been 

used to solve the general traveling salesman problem [Goldberg and Lingle 

1985; Grefenstette et al., 1985; Whitley et al., 19891, flow shop scheduling 

[Cleveland and Smith, 1989], job shop scheduling [Davis, 1985], machine 

learning [Goldberg, 1985a, 1989], and even to create production rules that 

pick winners of horse races [Maza, 1989]. This wide diversity of 

applications is an indication of the robustness of the GA procedure to 

perform well in a diverse problem domain. 

c. Review of genetic algorithm literature The volume of literature 

on genetic algorithms has increased dramatically since John Holland first 

introduced the procedure in 1975. Specifically, with the organization of 

three international conferences (1985, 1987, and 1989) and another being 
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planned in the future (July 13-16, 1991, at the University of California at 

San Diego), the amount of literature available has grown particularly in the 

past five years. Also, with the publishing of the text by David E. 

Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning 

[Goldberg, 1989], the field of genetic algorithms has seen new interest from 

a variety of fields. 

In this section we will attempt to summarize the available literature 

dealing with aspects of the implementation questions of a GA. The theory 

of schemata and convergence properties of a GA will be discussed in the 

following chapter. For a thorough treatment of the theory, the reader is 

directed to the aforementioned text by Holland. 

John Holland's text [Holland, 1975] discusses the theoretical 

foundations of a genetic algorithm. He explores the idea of abstracting the 

adaptive process of natural systems and designing artificial systems that 

retain the mechanisms of the natural systems. He introduces the idea of 

"implicit parallelism" where he reports that working with a population of N 

individuals, you are effectively processing 1f3 information of the search 

space. This has been a "well known but poorly understood" [Goldberg, 

1989, p. 40] claim, but recently has received some investigative studies to 

help understand this phenomenon [Grefenstette and Baker, 1989; Goldberg, 

1985b]. 

In Goldberg's text [Goldberg, 1989], he explains the basic mechanisms 

of the genetic algorithm in a very general and clear manner. He discusses 

the major issues of a genetic algorithm with emphasis on computer 
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implementation, robustness, theoretical derivation and mathematical 

foundations, and applications of the algorithm. He has furnished many 

Pascal examples and included computer assignments at the end of each 

chapter. He also includes two chapters on the implementation and summary 

of the literature regarding the use of GAs in machine learning. The text 

also has the most complete bibliographic listing of GA literature to date. 

Davis [Davis, 1987] edited a text that collected several papers, from a 

variety of authors, dealing with simulated annealing and genetic algorithms. 

In the first chapter he presents an overview of genetic algorithms and 

simulated annealing. The text continues with papers discussing the issues 

of premature convergence of a GA (contributed by Lashon Booker), the 

minimal, deceptive problem for a GA (contributed by David E. Goldberg), as 

well as many other issues concerning simulated annealing and GAs. 

Goldberg and Richardson [Goldberg and Richardson, 1987] discussed a 

method of "sharing functions" to enhance a genetic algorithm's ability to 

optimize multi-modal objective functions. This method developed the 

formation of stable subpopulations of different strings to permit the 

parallel investigation of many peaks. The theory and implementation was 

investigated for two, one-dimensional test functions. For a test function 

containing five peaks of equal height, a GA without sharing was found to 

lose strings at all but one peak, but was found that with sharing a GA 

maintains approximately equally sized subpopulations at all five peaks. For 

a test function with five peaks of unequal height, a GA with sharing was 

found to allocate a proportionally decreasing number of strings to each 

decreasing peak. 
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Syswerda [Syswerda, 1989] investigated the applicability using a 

uniform operator to replace the normal one-point or two-point crossover 

operator. He developed the theoretical implications of the uniform operator 

with respect to the survival rate of the schemata expressed by the 

parents. He then compared the uniform operator's performance against a 

variety of function optimization problems. 

Fogarty [Fogarty, 1989] discussed the effect of varying the mutation 

probability over time and its effect on GA performance. He used ten 

different simulations of multiple burner furnaces created randomly, where a 

GA was used to set the air inlet valve in order to minimize combustion 

stackloss in the common flue. Two initial populations of settings were 

used, one consisting of the most conservative starting point with all inlets 

fully open and the other randomly generated. Mutation rates were then 

varied according to four different time schedules. It was observed that 

varying the mutation rate significantly improved performance of the 

conservative initial population case, but not when the initial population was 

randomly generated. 

Richardson et ale [Richardson et al., 1989] discussed some guidelines 

for genetic algorithms with penalty functions. The concept of the penalty 

function is to "penalize" those observations that are infeasible in a 

constrained optimization problem. Therefore, the purpose of the penalty 

function is to decrease (increase) the objective function result by a 

specified amount in order to achieve a global maximum (minimum) that is 

feasible. Current thought is to penalize infeasible observations very 

harshly. Richardson investigated this practice, and provided some 
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guidelines to the use of these functions. 

4. Summary of literature 

All approaches have their merits and difficulties, but all three could 

be considered as viable options to attempt the buffer allocation problem of 

AASs. Simulated annealing and genetic algorithms, however, are inherently 

designed for problems dealing with deterministic objective functions. The 

AAS optimization problem is a stochastic function of the decision variables; 

therefore, attention needs to be given to the fact that the objective 

function estimate is an expectation. The simulated annealing algorithm has 

been shown to converge in probability to the global optimum with 

probability one, but this again is for a deterministic function. One cannot 

assume the property in the stochastic case. 

The SQG method is shown to be a viable option, but the algorithm 

tendslo be a "greedy" algorithm in that it finds local optima quickly at 

the expense of locating global optima. The simulated annealing algorithm 

also presents itself as a possible optimization technique, but the long run

times required for convergence is a drawback. The genetic algorithm 

presents an interesting approach and has not been attempted on a AAS 

optimization problem; therefore, a genetic algorithm will be implemented and 

tested. 
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ill. METHODOLOGY 

This chapter will discuss the methods involved with constructing a 

simulation model of a representative AAS system, and the implementation 

details of a genetic algorithm. The discussion of the simulation model will 

concentrate on implementation issues concerning using an object-oriented 

general-purpose language (C++ was used) for simulation modeling. The 

model was validated by using a model described in Liu and Sanders [Liu 

and Sanders, 1988] and comparing their results with those obtained by the 

simulation model of this study. 

The mathematical foundations of a genetic algorithm will also be 

addressed. The formulation of schema and the effective processing of 

these schema will be the concentration in the theoretical discussion. Also, 

the fundamental theorem of genetic algorithms will be derived and 

examined. 

A. Simulation Model 

In order to evaluate the impact of different buffer allocation 

configurations in an AAS, a method to obtain estimates of the objective 

function values is required. As discussed in Section II.A.1. b, analytical 

models for a closed loop system make very restrictive assumptions for the 

inputs and the number of stations allowed. Simulation allows one to design 

a model that can incorporate a higher degree of stochastic complexity, 

where the interactions of random variables need not be described explicitly. 

However, the simulation model can require a large investment of time to 
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design, debug, and execute the model. 

Numerous dedicated simulation languages (GPSS, Simscript, Simula, 

etc.) are available to reduce the amount of programming effort required in 

designing a simulation model. The languages aim to make writing 

simulations more concise and making the simulation mechanics more 

transparent. A dedicated simulation language offers convenience, but often 

at the sacrifice of control. 

Central to any simulation model is several essential components 

including: a clock mechanism, a source of random numbers, a listing of 

upcoming events to be processed (event schedule), data structures for 

statistics gathering, and data structures representing transactions, 

resources, and queues. A dedicated simulation language offers routines to 

automate some of these processes. However, a general-purpose 

programming language offers the flexibility and the opportunity to design 

all components of the simulation model. The programming language C++ was 

chosen for several reasons: 

A compiler was available for the PC style computer. 

Data structures can be created dynamically. That is, the 

memory required for a data structure is allocated at run-time 

versus compile-time. This enables the efficient use of memory 

by using only that which is required. 

Object oriented design of data structures. 

The last reason is the primary reason for choosing C++ over the C 

programming language. An object-oriented language allows the grouping of 

data, and the procedural routines (functions) that work on this data, into a 
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single structure defined as an "object." For this model, this relates to 

defining objects such as queues, stations, and pallets, and then designing 

how these "objects" interact with one another. 

A general-purpose programming language also permits the design of 

the simulation system resources. Thus, the system resources can be 

optimized for execution speed and reliability for the implementation of the 

specific model. The critical system resources for this model were the 

random number generator and the method of inserting and removing events 

from the event schedule. 

The random number generator implemented was the generator 

proposed by Wichmann and Hill [Wichmann and Hill, 1982]. This used three 

simple multiplicative congruential generators to combine and make one 

uniform random number stream. The advantage of this generator is the 

long cycle length (reported to exceed 2.78 x 1013). 

A splay tree was used to store the upcoming simulated events. A 

splay tree is essentially a special form of a binary tree. A simple binary 

tree will become unbalanced by the repeated removal of the leftmost event 

on the tree. The splay tree eliminates this problem by balancing the tree 

with every insertion or removal of an event. The splay tree was found to 

be consistently stable and perform better than a variety of other 

implementations [Jones, 1986]. For a thorough comparison of 

implementations, the reader is directed to the aforementioned study by 

Douglas Jones. 

Once a simulation model is coded, the program is checked in two 

stages: verification and validation. Verification involves checking the 
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simulation program to determine if it operates in the manner in which it 

was intended to operate. That is, this is the "debugging" procedure of 

any programming exercise. To validate this simulation model, as was 

mentioned in the opening of this section, Liu and Sanders' model was used 

as a check. Their study reported expected throughput for several system 

configurations. Three of these configurations were chosen, and ten 

simulation runs consisting of manufacturing 20,000 assemblies each were 

used to obtain the confidence intervals. In each case, the first 10% of 

each run is removed in an attempt to remove the initial transient. All 

three configurations had no significant difference between the simulation 

model used in this study with that used in Liu and Sanders' study. The 

results can be seen in Table 1. 

B. Genetic Algorithm 

Genetic algorithms can be shown to possess a random, yet structured, 

method for functional optimization. The discussion in Section H.B.3 was 

intentionally qualitative to simply introduce the mechanics of a genetic 

algorithm. Here, we will explore more rigorously the implications of the 

mechanisms of a genetic algorithm. The notion of schemata and similarity 

templates will be introduced and how the transformations of reproduction, 

crossover, and mutation effect these. 

1. Mathematical foundations 

Without 'any loss of generality, consider a string A containing I 

elements defined. on the binary alphabet V = {O, 1}. Where A may be 

represented: 
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Table 1. Verification of c++ simulation program code against results 

reported by Liu and Sanders (1988). 

Buffer Size C++ Liu &: 
Hodel Sanders 

Bl B2 B3 B4 B5 B6 B7 B8 B9 B10 TP 95% CI TP 95% CI 

5 5 17 4 4 4 4 5 5 5 0.1275 10.0012 0.1286 10.0016 

4 4 10 10 12 12 4 4 4 4 0.1285 10.0024 0.1301 10.0024 

2 3 4 4 4 2 2 2 3 3 0.1273 10.0021 0.1270 10.0027 

where: 
TP = Throughput of last station (ie:, average number of parts produced per time unit) 
Geometric Mean Clear Time = 36 time units for all station 
Station Cycle Time = 5 time units for all stations 

Configuration 1 
Total number in system = 40 pallets 
Jam rates = (0, 3, 3, 0, 0, 0, 3, 0, 0, 0) per 100 assemblies for stations 
95~ confidence interval of the difference between the models = -0.0011 ± 0.0016 

Configuration 2 
Total number in system = 40 pallets 
Jam rates = (0, 3, 0, 3, 0, 3, 0, 0, 0, 0) per 100 assemblies for stations 
95~ confidence interval of the difference between the models = -0.0016 ± 0.0025 

Configuration 3 
Total number in system = 20 pallets 
Jam rates = (0, 3, 0, 0, 2, 0, 0, 2, 0, 0) per 100 assemblies for stations 
95~ confidence interval of the difference between the models = 0.0003 ± 0.0027 

A = al8za3a4 ••• a, 

Here each a i represents a binary feature (sometimes referred to as a gene 

or allele), and A represents the concatenation of the binary features 

(sometimes referred to as an individual). If we now consider a population 

of individual strings, Aj' j = 1, 2, 3, ••• , n, contained in population A(t) at 

generation't, the notion of schemata can now be addressed. 

Consider a schema H defined on the three-letter alphabet v+ = {O, 1, 

*}, where the * symbol is a wild card symbol which matches a 0 or 1 at a 

particular position. Therefore, if a string Aj has l binary positions, there 

are 3' schemata or similarity templates defined. For the entire population, 
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there are at most n' t- schemata since each individual is a representation of 

z! schemata. In general, a string with alphabet having cardinality C, there 

are (C + 1)' schemata defined with at most n' d schemata in the population. 

To establish a means of differentiating the properties of these schemata, 

schema order and defining length are used. 

Schema order, denoted o(H), is defined to be the number of positions 

that are fixed in a certain schema. For example, using a string length of 

seven (~ = 7), a schema 1**01** has an order of 3, whereas the schema 

**0**** has an order of 1. 

Schema defining length, denoted B(H), is defined as the distance (in 

allele positions) from the first to the last fixed string position. For 

example, the schema 1**01** has a defining length of 4. This can be seen 

by subtracting the first fixed position's index from the last fixed position's, 

or 5 - 1 = 4, In the other example schema, **0****, has a defining length 

of O. 

In order to understand how the schema are processed, the expected 

number of schemata in a population after reproduction can be determined. 

To restate the definition, reproduction involves randomly selecting 

individual strings with replacement, weighted according to the relative 

"fitness" of an individual string. A string Aj has probability pselect, = f/L" 
of being selected where I j is defined as the fitness of string j. The 

process of selecting an individual for reproduction has frequently been 

referred to as spinning a biased roulette wheel where each slot's dimension 

is sized according to string fitness. Now consider a schema H contained in 
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the population A(t) having m examples of this schema, denoted m=m(H,t). 

The average fitness for a particular schema at time t will be denoted f(H) 

and can be calculated using the following expression: 

.1(11) ,. 
m(H,t) 

The expected number of schema in a nonoverlapping population of size n is 

then given by the equation: 

m(H, t+ 1) = m(H, t) J(I!' 
f 

- EJj where: f-
n 

That is, those schema with average fitness greater than the population 

average fitness expect to have an increasing number of representative 

strings, while those schema with average fitness below the population 

average will expect to receive a decreasing number. Thus, reproduction 

allocates increasing numbers of high performance schemata in parallel. 

Reproduction allows the algorithm to distinguish between high and 

low performance schemata, but does nothing in the way of exploring new 

regions of the search space. The exploration process _ is performed 

primarily by crossover and secondarily by mutation. A simple crossover 

operation, to review, proceeds in two steps. First, two individual strings 

are chosen at random from the newly reproduced strings. Second, a 

crossover is performed with probability Pc' with a crossover occurring at a 
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uniform randomly selected position k along the string length less one 

[1, ~1]. Thus, a particular schema is disrupted if a crossover occurs 

within the interval of the first or last fixed position of the schema. As an 

example, the string Al and a representative schema HI is defined as follows: 

Al = 0 1 1 1 0 0 1 1 

HI = 0 * * 1 0 * * * 
If a crossover occurs at a point between the first and fifth positions, 

schema HI is disrupted (unless AI's mate is identical, with the probability 

of this occurring neglected giving a conservative estimate for the 

probability of schema disruption). Therefore, the probability that a schema 

survives depends on the defining length of the schema and the length of 

the string. The survival probability Ps will then have a lower bound 

described by the expression: 

Incorporating this expression into the schema expectation equation: 

m(H,t+l) ~ m(H,t) j(~ [t-pc &(H)] 
f I-I 

The final operation of a genetic algorithm is mutation. Mutation 

occurs at each position along the string with probability Pm. Hence, the 

position survives with probability (1 - P,) and a particular schema will 

survive with probability (1 - p.)O(H). For small values of Pm this can be 

approximated by 1 - o(H)· p. and the schema expectation can now be written 
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(ignoring cross-product terms): 

m(H,t+l) t!! m(H,t)ft.l!> [l-Pc tJ(H)_p",O(ll)], ~ t!! 2 
. f ~-1 

This result is the fundamental theorem of genetic algorithms. The schema 

theory describes how a genetic algorithm allocates an increasing number of 

trials to low order, short defining length, above average schema. However, 

the schema theory alone does not guarantee convergence for an arbitrary 

problem. This merely describes how a genetic algorithm processes many 

schema in a parallel fashion. Holland [Holland, 1975] estimated that by 

processing n strings, an order of n 3 schemata are usefully processed. This 

type of leveraged search he called implicit parallelism. 

Several authors have addressed the issue of lack of guaranteed 

convergence. Bethke [Bethke, 1981] examined some sufficient conditions for 

simple GA convergence using Walsh function analysis. Goldberg. [Goldberg, 

1990] described a selection procedure for genetic algorithms called 

Boltzmann'tournament selection. Here he borrows the concept of thermal 

equilibrium and the Boltzmann distribution from simulated annealing and 

adapts them to a genetic algorithm. This allows the implementation to 

exhibit the same asymptotic convergence as the simulated annealing 

algorithm. 

2. Implementation 

The implementation of a simple genetic algorithm was performed using 

the c++ programming language. The choice of using C++ over any other 

general-purpose programming language was not as critical an issue as it 
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was in the case of the simulation model. Typically, any programming 

language which contains the ability to group data into structures would 

suffice. 

The program was designed for generality at some expense' of program 

execution speed. The genetic algorithm optimization program, named 

GENOPT, manages all genetic operations and accumulates population 

statistics. The calculation of the objective function result was purposely 

not incorporated with the GENOPT program. This allows GENOPT to be 

applied to any executable program that generates an objective result, not 

just those programs compiled and linked with the GENOPT main program. 

GENOPT merely needs the name of the function calculation program (FCP) 

and any command line arguments, a FCP input file name, and a FCP 

objective function output file name. This was deemed desirable since the 

GENOPT program might be applied to simulation models coded in languages 

such as GPSS or Simscript in the future. 

C. Application of a GA to an AAS Buffer Allocation Problem 

The application of a simple genetic algorithm to the AAS buffer 

allocation problem will be the principal objective of this study. In order to 

gauge the effectiveness of a GA relative to other approaches, the analysis 

of Liu and Sanders [Liu and Sanders, 1988] will be closely followed. This 

will allow a direct comparison to the SQG method used in their study. 

As was shown in Section HI.A with the verification of the simulation 

model (Table 1), a 95% confidence interval of the difference between Liu 

and Sanders' model and the c++ model included zero for the three 
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configurations tested. This suggests that the two models are not 

significantly different. Therefore, we will adopt their system specifications 

and use them for comparison. 

The system used by Liu and Sanders was a ten-station, asynchronous 

closed-loop automatic assembly system. All stations had constant service 

times, random failures with geometrically distributed repair times, and 

transportation times of 1 time unit per buffer storage unit. The number of 

pallets were fixed at 40 for the first two configurations and at 20 for the 

last. It was assumed that there was no scrapping of assemblies due to 

failures. 
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IV. RESULTS 

The results of this study are assembled into two sections. The first 

section will report the results of using a genetic algorithm to optimize four 

different deterministic objective functions where the optimal solution is 

known. This will serve as a benchmark on the performance of the simple 

genetic algorithm under a variety of objective functions. The analysis will 

concentrate on the effects of population size, crossover probability, and 

mutation probability on GA performance. 

A. GA Performance on Deterministic Functions 

To verify the performance of the genetic algorithm coded in the 

GENOPT program, four different objective functions were used. These 

functions are presented in Table 2. The first function is maximized while 

the remaining functions are minimized. Functions!,.' ~, and ~ were used 

by DeJong [DeJong, 1975] in his dissertation, "An Analysis of the Behavior 

of a Class of Genetic Adaptive Systems." DeJong's study consisted of 

eValuating GA performance under a variety of conditions using a five 

function testbed. The three functions used here were the first thr~e of 

the five. Since the objective of this study is to apply a GA to an AAS 

buffer allocation problem, the four functions were deemed sufficient to 

verify the working of the GENOPT program. 

In order to evaluate the performance of the GA, a method of 

quantifying system performance is required. DeJong used two functions to 

quantify GA pel-formance and these functions will be used here. He defined 
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Deterministic objective functions used in GA parameter 
performance evaluation 

ft(x) = x lO Osx~l 
3 

f2(xJ - Ex; -S.12~,~S.12 
I 

f3(x~ = lOO(X;-x.Jz+(l-xlf -2.048~,~2.048 
5 

4(xJ = L integer(xJ O~I~10.48 
1 

a measure of the convergence and a measure of the ongoing performance. 

He called these measures, off-line and on-line' performance respectively. 

On-line performance under strategy s of function i can be expressed: 

1 T 
01.3)=-EIl.t) 

Tl 

where f/.t) is the objective function value for trial t. This is simply the 

running average of all individuals up to and including individual t. The 

strategy is defined as the current parameter settings of the genetic 

algorithm (i.e., population size, crossover probability, mutation probability, 

etc.). The off-line performance under strategy s of function i can be 

expressed: 

• 1 T 
0, (3)=-Ej,(t) 

T 1 

where ~(t~ J._~ U'(l) ~(2) nt)} This is a running average of the best J I J = veoJ. f\. ,J I , ... , J f\. • 

performance values for each generation up to a particular time. 



www.manaraa.com

45 

1. Choice of population size 

With these performance measures now defined, a thorough investiga

tion of how the performance of a GA is impacted by choice of population 

size, crossover probability, and mutation probability can be achieved. The 

population size was the first parameter studied. The population size was 

set at 50, 100, 200, 300, and 600 individuals while maintaining a constant 

crossover probability, Pc = 0.6, and mutation probability of Pm = 0.001. The 

crossover and mutation probabilities were chosen according to previous 

findings in the literature that these settings are a reasonable compromise 

between good on-line and off-line performance. The results of this analy

sis are presented in Figure 4 through Figure 11. 

As can be seen in the figures, off-line performance tends to improve 

as the population size increases. This can be explained by the greater 

number of individuals in the gene pool from which a best performer can be 

drawn. On-line performance, on the other hand, tends to improve as 

population size decreases. The individuals of the smaller population sizes 

experience more genetic operations, thus the population contains more 

"good" performers on average, but may be over-zealous and lose informa

tion at certain bit positions. 

An example of this can be seen in the GA optimization of It with a 

population size of 30 (see Figure 12). The optimum solution for this 

function would be a string consisting entirely of l's. However, as can be 

seen, aU population strings have a 0 at certain bit positions. The only way 

to regain 1 's in these positions is to perform a mutation operation. 
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2. Choice of crossover probability 

The choice of crossover probability was the next GA parameter 

studied. To review, the crossover probability is defined as the likelihood 

of mating two individual strings after reproduction. The implementation of 

this GA parameter amounts to generating a random number x, then checking 

whether the random number is less than the crossover probability p. If c 

x < Pc' perform a crossover to obtain two new child strings, else leave 

parent strings unchanged in the future generation. The crossover 

probability was set at 0.2, 0.4, 0.6, 0.8, and 1.0 and the effects upon off-

line and on-line performance was observed (see Figure 14 through 

Figure 20). From the analysis of the choice of population size, a population 

size of 100 was chosen while maintaining the mutation probability at the 

previously set level of .001. 

In general, a crossover probability of 0.6 or 0.8 seemed to achieve 

acceptable off-line and on-line performance. The GA performance was 

observed to be less dependent on choice of crossover probability than for 

choices of population size and mutation probability. An exception was 

observed, however, for the function 13" This can be easily explained by 

examination of the function itself. The function is minimized when both xl 

and x 2 are equal to 1, but will experience good results whenever Xl = Xl" 

This leads to high performance schema that have high defining lengths 

8(H). Thus, higher crossover rates will disrupt these schema with a higher 

probability. 
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3. Choice of mutation probability 

The choice of mutation probability was the final GA parameter 

studied. Again, the mutation probability involves the switching a bit 

position from its current state to another state at random. For our case, 

this amounts to switching a bit from a 1 to a 0 or vice versa. The 

mutation probability was set at the levels .001, .005, .01, .02, .05, and .1 

using a population size of 100 and a crossover probability of 0.6 (see 

Figure 21 through Figure 28). 

Mutation probability was observed to have a large effect on both off

line and on-line performance. The effect was particularly evident with on

line performance. A mutation probability of 0.1 is changing 1 of every 10 

bits exchanged during crossover on average. This greatly counteracts the 

productivity of the crossover and reproduction operations. Also, 0.1 is 

approaching a mutation probability of 0.5, which is a random walk of the 

search space at any population size. 

A mutation probability of .001 or .005 seemed to enjoy the best 

performance. At this level, the mutation operation is sufficient to introduce 

new bit sequences without undermining the reproduction and crossover 

transformations. 
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Figure 26. The effects of mutation probability on on-line 
performance for function f3 



www.manaraa.com

6 

5 
...... ... ..... • 04 

rD 
C) 
0 

~ 3 
> 

..c( 

II 

=f2 --0 

5 

60 

10 15 
Trial Number, t 

(Thousands) 

20 25 

---.001 
-+-
.005 --.01 
-a-
.02 
-M-

.05 
-.... 
.1 

Figure 27. The effects of mutation probability on off-line 
performance for function f4 

18 

16 

14 ...... .... ....., 
o 12 

Ii 
~ 10 .. 
GI 
> 

B 4( 

GI 

~ 6 
t: 
0 

4 

2 

o 
o 

'\ 
~ -. .......... 

~ 
~~b 
\~ 
'\.. ~ --...... 

5 10 15 
Trial Number. t 

(Thousands) 

r-----.001 
-+-
.005 
....... 
.01 
-s-
.02 
-M-

.05 
-.... 
.1 -

':'~ ~ 

20 25 

Figure 28. The effects of mutation probability on on-line 
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4. Fitness scaling 

At the beginning of a' GA run, the population most likely contains few 

high performing individuals with many medium to low performing ones. If 

reproductive selection using the normal selection criteria ( pselect, = ~I L~) 

is allowed, the few high performing individuals dominate the subsequent 

generation. This is an undesirable effect since many high performing allele 

positions (gene or bit positions) may be lost early in the run. This 

phenomenon is a leading cause for premature convergence of a GA. 

At the end of GA run, a different problem arises. As the run 

matures, the population stabilizes and the population average fitness is 

close to the best fitness value. The reproductive selection now tends to 

produce generations comprised of a high proportion of these average 

performers, rather than concentrating on those high performing individuals. 

In both of these cases, fitness scaling can help enhance the 

reproductive selection. A linear scaling was proposed by Goldberg 

[Goldberg, 1989] and is used in this study. The linear scaling function can 

be expressed as follows: 

f = af+b 

where the scaled average should remain the same as the original average 

and all scaled observations do not violate the non-negativity restraint. 

Goldberg suggests using a scaling such that the following expression holds: 

where C is the expected number of copies desired for the best 
IIfIIlt 
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individual in the subsequent generation. Goldberg states that a value of 

1.2 to 2 has been successfully used in small populations (n = 50 to 100). If 

the generation has a few individuals which are far below the average 

fitness, the value of C
malt 

will have to be reduced. The fitness values can 

then be scaled such that the population average fitness remains unchanged 

and Imtn = o. 
The fitness scaling procedure presented in Goldberg's text was 

implemented and examined in order to determine if improved GA 

performance could be realized. The scaled GA runs were compared to the 

simple GA runs to observe any increased performance (see Figure 29 and 

Figure 30) for C
malt 

= 2.0. As can be seen, fitness scaling increased both 

off-line and on-line performance when a population size of 50 was used. 
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B. GA Performance on an AAS Simulation Model 

As was described previously, this analysis will parallel Liu and 

Sanders' work where they evaluated the performance of a SQG method as 

related to the AAS buffer allocation problem. Liu and Sanders tested SQG 

performance for a variety of models. Of these models, three system 

configurations were chosen to examine GA performance. 

The objective of the GA is to search and locate those buffer 

allocation configurations which maximize system throughput. Since we are 

interested in only those highest performing individuals, we will be 

concerned primarily with off-line performance of the GA. More importantly 

we will be interested in whether or not the GA can outperform the SQG 

method. 

The first configuration was tested allowing all buffer storage 

capacities to vary from 1 to 32 units. Individual station buffer capacity 

was then able to be represented in 5 bit positions allowing the system to 

be defined by a string of length , = 50. Two GA runs were performed 

having population sizes n = 50 and n = 100. The off-line performance (see 

Figure 31) was improved by using the larger population size. However, 

when a 95% confidence interval was constructed, neither run could 

outperform the SQG method (see Table 3 and Table 4). However, the GA 

run having a population size of 100 could not be rejected as an inferior 

configuration (at a 5% level of significance). 

The first configuration was then tested allowing storage capacities to 

vary from 1 to 16 units. This reduced the search space by 210 
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configurations, with the thought that the GA might search out high 

performing configurations quicker. As is shown in Table 5, the GA 

performed better than the previous run, but still was unable to outperform 

the SQG method at a statistically significant level. 

The second and third AAS configurations were attempted while 

keeping the buffer capacities limited between 1 and 16 with a population 

size of 100. The results (see Table 6 and Table 7) show similar GA 

performance, however for the third configuration the GA did slightly better 

than the SQG method. This was not at a statistically significant level, 

however. 
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Figure 31. The effects of population size on off-line performance for AAS 
simulation model throughput for configuration 1 
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Table 3. Confidence interval estimates for GA and SQG best buffer 
configurations (buffer capacity allowed to vary from 1 to 32 
units, GA population size n = 50) 

Buffer Capacity 

Optim. Method B1 B2 B3 B4 B5 

SQG 5 5 17 4 4 

GA 23 19 14 17 17 

Estimation of throughput by C++ simulation 

Optim. Method Buffer 

SQG 

GA 

Configuration 

Difference (GA - SQG) 

B6 B7 B8 B9 

4 4 5 

9 7 5 

model 

95% C.I.t 

0.1275 ± 0.0012 

0.1249 ± 0.0020 

5 

7 

-0.0026 ± 0.0011 
I Confidence interval estimates calculated using 10 independent 
simulation runs of 20,000 assemblies each. For each throughput 
estimate, the first 10% is removed to in an attempt to eliminate the 
effects of initial transient. This technique will be used for all 
remaining tables unless otherwise noted. 

Configuration· 1 settings: 

Total Number of Pallets in System = 40 pallets 

B10 

5 

14 

Jam rates = (0, 3, 3, 0, 0, 0, 3, 0, 0, 0) per 100 assemblies for stations 
Geometric Mean Clear Time = 36 time units 
Cycle Time = 5 time units for all stations 
Transport Time = 1 time unit per buffer unit 
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Table 4. Confidence interval estimates for GA and SQG best buffer 
configurations (buffer capacity allowed to vary from 1 to 32 
units, GA population size n = 100) 

Buffer Capacity 

Optim. Method 

SQG 

GA 

B1 

5 

2 

B2 B3 

5 17 

20 16 

B4 B5 

4 4 

17 11 

B6 

4 

30 

B7 

4 

23 

B8 B9 B10 

555 

869 

Estimation of throughput by C++ simulation model 

Optim. Method Buffer Configuration 

SQG 

GA 

Difference (GA - SQG) 

Configuration 1 settings: 

Total Number of Pallets in System = 40 pallets 

95% C.l. 

0.1275 ± 0.0012 

0.1267 ± 0.0017 

-0.0008 ± 0.0010 

Jam rates = (0, 3, 3, 0, 0, 0, 3, 0, 0, 0) per 100 assemblies for stations 
Geometric Mean Clear Time = 36 time units 
Cycle Time = 5 time units for all stations 
Transport Time = 1 time unit per buffer unit 
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Table 5. Confidence interval estimates for GA and SQG best buffer 
configurations (buffer capacity allowed to vary from 1 to 16 
units, GA population size = 100) 

Buffer Capacity 

Optim. 
Method 

SQG 

GA 

B1 

5 

11 

B2 

5 

12 

B3 

17 

13 

B4 

4 

3 

B5 

4 

16 

B6 

4 

11 

B7 

4 

11 

B8 

5 

11 

B9 

5 

13 

Estimation of throughput by C++ simulation model 

Optim. Method Buffer Configuration 

SQG 

GA 

Difference (GA - SQG) 

Configuration 1 settings: 

Total Number of Pallets in System = 40 pallets 

95% C.!. 

0.1275 ± 0.0012 

0.1272 ± 0.0020 

-0.0003 ± 0.0011 

Bl0 

5 

12 

Jam rates = (0, 3, 3, 0, 0, 0, 3, 0, 0, 0) per 100 assemblies for stations 
Geometric Mean Clear Time = 36 time units 
Cycle Time = 5 time units for all stations 
Transport Time = 1 time unit per buffer unit 
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Table 6. Confidence interval estimates for GA and SQG best buffer 
configurations for system configuration 2 

Buffer Capacity 

Optim. Bl B2 B3 B4 B5 B6 B7 B8 B9 
Method 

SQG 4 4 10 10 12 12 4 4 4 

GA 13 4 4 13 15 15 7 10 5 

Estimation of throughput by C++ simulation model 

Optim. Method Buffer Configuration 

SQG 

GA 

Difference (GA - SQG) 

Configuration 2 settings: 

Total Number of Pallets in System = 40 pallets 

95% C.l. 

0.1289 ± 0.0022 

0.1285 ± 0.0015 

-0.0004 ± 0.0012 

BIO 

4 

6 

Jam rates = (0, 3, 0, 3, 0, 3, 0, 0, 0, O) per 100 assemblies for stations 
Geometric Mean Clear Time = 36 time units 
Cycle Time = 5 time units for all stations 
Transport Time = 1 time unit per buffer unit 
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Table 7. Confidence interval estimates for GA and SQG best buffer 
configurations for system configuration 3 

Buffer Capacity 

Optim. B1 B2 B3 B4 B5 B6 B7 B8 B9 
Method 

SQG 2 3 4 4 4 2 2 2 3 

GA 1 12 1 8 8 4 5 6 5 

Estimation of throughput by c++ simulation model 

Optim. Method Buffer Configuration 

SQG 

GA 

Difference (GA - SQG) 

Configuration 3 settings: 

Total Number of Pallets in System = 20 pallets 

95% C.I. 

0.1272 ± 0.0019 

0.1273 ± 0.0016 

0.0001 ± 0.0014 

B10 

3 

1 

Jam rates = (0, 3, 0, 0, 2, 0, 0, 2, 0, 0) per 100 assemblies for stations 
Geometric Mean Clear Time = 36 time units 
Cycle Time = 5 time units for all stations 
Transport Time = 1 time unit per buffer unit 
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C. Summary 

It has been shown that the GA shows acceptable performance for the 

AAS buffer allocation problem, but· does not show great performance. This 

comes at the expense of considerable computation time. Liu and Sanders 

reported a time of 45 minutes was required to complete 10 iterations of the 

SQG algorithm. Typical execution times for the GA implementation were 

approximately 5 hours (on an '386 based PC running at 25 MHz). 

Therefore, unless a better implementation of a GA is discovered, the added 

computation effort is not merited. 
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V. CONCLUSION 

The preceding chapters described and implemented a simple genetic 

algorithm and applied this algorithm to the buffer allocation problem of a 

closed-loop, asynchronous, automatic assembly system. The analysis also 

involved the investigation of GA parameter settings and how these 

parameters affect GA performance. 

At this point, a successful implementation of a genetic algorithm on 

the buffer allocation problem has not been realized. There are several 

reasons why this might be the case. Since the objective function is 

stochastic, we investigate maximizing a point estimate of an expectation 

function, rather than a deterministic function. The natural variation of 

this estimate leads to an objective function that is inherently "noisy." 

Therefore, replicating observation points (through using several simulation 

runs, instead one longer simulation run) might be advantageous. This also 

might lead to the use of a penalty function, where the variance of the 

point estimate could be incorporated into the objective function; thus, 

"penalizing" those observations that have a high variance. 

The computational requirements for a GA run were quite large. The 

simple fact that the GA might not have had enough time to properly mature 

could be another explanation for lack of performance. 

Though the genetic algorithm did not outperform the SQG method, the 

results were somewhat encouraging. The GA does generate a large variety 

of system configurations, which the design analyst mayor may not have 

considered. Since the algorithm uses blind inference, this can be beneficial 
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in locating system designs that might have been overlooked. The GA also 

has the advantage of being totally automatic, thus a system designer does 

not need to use the algorithm interactively. 

Future research could be directed in several areas. More analysis is 

required to determine what constitutes good GA parameter settings. This is 

especially needed when a GA is applied to a stochastic objective. 

Also, more analysis is required to determine how much effort should 

be given to generating an objective function estimate. With the execution 

time being critical, it is important not to run the model an unnecessarily 

long period. Perhaps a method could be devised that would increase the 

simulation run length as the number of generations increased. The use of 

penalty functions could also be investigated. 

With the use of distributed processing computers (i.e., computers 

with parallel processor architectures), the long execution times might be 

reduced sufficiently to make the GA more appealing. Since the genetic 

algorithm searches many regions in parallel, the algorithm would be well 

suited for implementation on a parallel processor. 

In summary, the genetic algorithm gave encouraging performance on 

optimizing the buffer sizes for this particular system configuration. Since 

neither the SQG method or the GA arose as a qualified winner, both seem to 

be adequate approaches to the buffer allocation problem. 
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